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INTRODUCTION 
Traumatic Brain Injury (TBI) is a complex, heterogeneous disease affecting millions of people in the U.S. 
each year [1]. Multimodal monitoring (MMM) is a relatively new attempt to access and monitor the brain 
post injury by incorporating multiple sources of information recorded in the intensive care unit (ICU) [2]. 
As a result, MMM has led to the creation of exhaustive datasets, allowing for the integration of many 
different signals and modalities pertaining to the management of severe TBI [2-4]. One of the most pressing 
questions about a TBI patient is whether an incident, or an event, will occur in the near future [5]. 
Additionally, clinicians require sufficient time before the onset of an event to administer a drug to the 
patient to avoid the oncoming event. Therefore, the aim of this work is to detect whether physiological 
events will occur in the future using the multimodal physiological data as features. In this study, we leverage 
both the breath and resolution of physiological data to predict the onset of physiological incidents 30 
minutes before their onset. Specifically, we focus on three physiological events, namely high intercranial 
pressure (ICP), out of range diastolic arterial blood pressure (ABP), and out of range systolic ABP, using 
seven relevant modalities. 

Previous explorations of machine learning applied to the neurocritical care data focus on incorporating low-
frequency physiological measurements with other temporally low-resolution features such as laboratory 
test results and images [6]. On the other hand, our study focuses on analyzing the high-resolution 
physiological data. 

METHODS 

A subset of the data collected from the multi-site Transforming Research and Clinical Knowledge in TBI 
(TRACK-TBI) data consortia was harmonized and uploaded to a remote cloud repository. Using 36 patients 
from two sites, we built a raw data set containing ICP, peripheral capillary oxygen saturation (Sp02), heart 
rate (HR), respiratory rate (RR), temperature, diastolic ABP, and systolic ABP [7]. In order to have a 
patient’s data included in the study, there had to be regions of temporally matched physiological data over 
these seven modalities for at least 30 minutes. As the goal of our study was to observe the modality incidents 
in pathophysiology, data from healthy controls was not collected. Further, healthy patients are not typically 
available for this analysis. Most of the time, multimodal data is particularly invasive, such as measuring 
ICP using an external ventricular drain. Instead, within range regions are used as controls. Features from 
these seven modalities were extracted through windows of varying lengths 30 minutes to 60 minutes before 
the onset of a defined event. These events include ICP greater than 22 mmHg, diastolic ABP above 89 
mmHg or below 60 mmHg, and systolic ABP above 139 mmHg or below 90 mmHg for at least a minute. 
We consider 6 different windows of varying sizes spanning from 30 minutes to x minutes before the onset 
of an event, where x = 35, 40, 45, 50, 55, and 60 minutes. Each window had 84 features, composed of 
various statistics (mean, median, variance, quantile (n=10), standard deviation, skew, interquartile range, 
range, sum, minimum, maximum, and slope) for the time series and the logarithm, square, and square root 
transformations of the time series.  
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(a) An example incident (n=965) for ICP over the threshold of 22 mmHg for approximately one minute is shown in the gold 
rectangle on the right. The regions used in feature engineering are labeled with solid red lines and dashed red lines.  

(b) The preprocessing steps used to encode the data represented in (a) into relevant features for machine learning. First, data 
epoching broke the 30-minute region into regions with variable lengths. Next, four transformations were applied on each of these 
regions. Finally, 12 functions resulted in 21 features for each transformed input. 

Figure 1. Illustration of the feature extraction methodology 

This feature engineering technique to discover relevant features has been proven effective in other 
applications [5] (Figure 1). From the raw data, 504 features per modality (3,528 in total) were calculated 
for our classification problem. Over 5,000 sample regions from each of these three modalities were 
collected from across all 34 patients.  

RESULTS 

In our study, we exploit classical logistic regression, support vector machine (SVM), random forest, k-
nearest neighbor, one-class SVM, extreme gradient boosting, and deep neural networks (DNN). Several 
metrics such as accuracy, precision, recall, and F1-score were extracted for each method. Due to an 
observed unbalanced class distribution, four different scenarios were analyzed based on this distribution 
(balanced or unbalanced) in the data set: training balanced and testing balanced, training balanced and 
testing unbalanced, training unbalanced and testing balanced, and training unbalanced and testing 
unbalanced. Although the best model to use for this problem would be a state-of-the-art model, we explore 
a bottom-up approach to this problem for two reasons: 1) state-of-the-art models have not been extensively 
studied for high-resolution physiological multimodal data in neurocritical care, and 2) clinicians often want 
explainable models to enhance judgement contrary to replacing it [8]. Therefore, simpler algorithms may 
provide a better intuition to why the events of interest might occur in the future.  

ICP was best predicted by random forest (n=100) in a balanced-balanced distribution (n=382) with an 
accuracy of 94%, a precision of 94%, a recall of 93%, and an F1-score of 94%. For diastolic ABP, it was 
best predicted with a balanced-unbalanced distribution using random forest (n=100) with an accuracy of 
75%, a precision of 76%, a recall of 77%, and an F1-score of 75%. Systolic ABP was best predicted in a 
balanced-unbalanced distribution using random forest with a reported accuracy of 80%, a precision of 81%, 
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a recall of 81%, and a F1-score of 80%. According to our study, random forest was the best model and 
outperformed complex machine learning models, such as DNN.  

FUTURE WORK 

The largest limitation of this study is that we did not collect enough patient event data. Despite this 
shortcoming, the accuracy metrics illustrate good overall performance for the available data. The proposed 
model was able to predict the ICP incidents from different patients across two sites accurately which 
illustrates the sufficient robustness against overfitting. Further external validation is necessary to determine 
whether that is in fact the case. It might be worthwhile to include more sites, metrics, and modalities in the 
future to learn relationships amongst different physiological phenomena. Parameter selection was limited. 
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