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Abstract— Interpretation of electroencephalogram (EEG)
signals can be complicated by obfuscating artifacts. Arti-
fact detection plays an important role in the observation
and analysis of EEG signals. Spatial information contained
in the placement of the electrodes can be exploited to
accurately detect artifacts. However, when fewer electrodes
are used, less spatial information is available, making it
harder to detect artifacts. In this study, we investigate the
performance of a deep learning algorithm, CNN-LSTM,
on several channel configurations. Each configuration was
designed to minimize the amount of spatial information
lost compared to a standard 22-channel EEG. Systems
using a reduced number of channels ranging from 8 to
20 achieved sensitivities between 33% and 37% with false
alarms in the range of [38, 50] per 24 hours. False alarms
increased dramatically (e.g., over 300 per 24 hours) when
the number of channels was further reduced. Baseline
performance of a system that used all 22 channels was
39% sensitivity with 23 false alarms. Since the 22-channel
system was the only system that included referential
channels, the rapid increase in the false alarm rate as
the number of channels was reduced underscores the
importance of retaining referential channels for artifact
reduction. This cautionary result is important because one
of the biggest differences between various types of EEGs
administered is the type of referential channel used.

I. INTRODUCTION

An electroencephalogram (EEG) is a very popular non-
invasive tool for recording signals and diagnosing brain-
related illnesses [1]. The 10-20 electrode configuration
is by far the most popular standard worldwide for
conducting EEG tests [2] and provides clinicians an
adequate amount of information about the signal to
make a diagnosis. Higher density EEGs are popular
in research communities for their superior localization
capabilities, but are still not common in clinical practice.
Though the increased density of the electrode grid does
provide additional information, this information is not
significantly more informative and does not justify the
additional disk space required to archive the data.

The TUH EEG Corpus (TUEEG) [3], which is the
subject of this study, is the world’s largest publicly ac-
cessible archive of clinical EEG recordings. It contains
over 40 unique channel configurations. Many of these
configurations were created to assist in the diagnosis
of specific diseases. The most striking difference in
these configurations is the manner in which ground

and reference is used when a differential montage is
constructed [4][5]. Since EEG signals are very low in
voltage and quite noisy, grounding and/or referencing
plays a key role in one’s ability to collect clean signals.

In this paper, we focus on an important subset of
TUEEG known as the TUH EEG Seizure Corpus
(TUSZ) [6]. Over 90% of these files use the 19-channel
configuration shown in Figure 1 [7]. We have applied
a combination of longitudinal and transverse bipolar
montages, referred to as a TCP montage [7], to create
22 channel differential-bindings with a focus on focal
regions of the scalp. This montage is also summarized
in Figure 1.

Here is an example of how equations should look:

Sensitivity(Recall) = (T P/((T P+FN))) (1)
Speci f icity(Selectivity) = (T N/((T N +FP))) (2)
Accuracy = (((T P+T N))/((T P+FN +T N +FP))) (3)
Precision = (T P/((T P+FP))) (4)

TUSZ has been manually annotated for diverse mor-
phologies of seizure events. We have introduced a deep
learning architecture [8] that achieves a very low false
positive rate (FPR). This system integrates convolutional
neural networks (CNNs) with recurrent neural networks
(RNNs) to deliver state of the art performance. This
doubly deep recurrent convolutional structure models
both spatial relationships (e.g., cross-channel depen-
dencies) and temporal dynamics (e.g., events such as
spikes).

 

Figure 1. Electrode locations for a standard 10-20 system with
a defined 22-channel TCP montage
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The integration of CNNs and long-short term memory
(LSTM) units does a much better job rejecting artifacts.
Artifacts and events such as wicket spikes, rectus muscle
and electrode-pop artifacts are easily confused with
spike and wave discharges because they often appear on
only a few channels similar to the way seizure events
present themselves. The depth of the convolutional
network is important since the top convolutional layers
tend to learn generic features while the deeper layers
learn dataset specific features. The convolutional LSTM
architecture with proper initialization and regularization
delivers 30% sensitivity at 6 false alarms per 24 hours
[9].

Feature extraction typically relies on time frequency
representations of the signal. Though we can replace
traditional model-based feature extraction with deep
learning-based approaches that operate directly on the
sampled data, in this work we focus on the use of tra-
ditional cepstral-based features. In our current system,
we use a traditional linear frequency cepstral coefficient-
based feature extraction approach (LFCCs) [5][10]. We
also use first and second derivatives of the features since
these improve performance. Though we can replace
traditional model-based feature extraction with deep
learning-based approaches that operate directly on the
sampled data, or more advanced discriminative features,
these have not yet produced substantial improvements
in performance for this application.

Neurologists typically review EEGs in 10 sec windows
and identify events with a temporal resolution of ap-
proximately 1 sec. Following this approach, we chose
to analyze the signal in 1 sec epochs, and further divide
this interval into 10 frames of 0.1 secs each so that
features are computed every 0.1 seconds (referred to as
the frame duration) using 0.2 second analysis windows
(referred to as the window duration). The output of
our feature extraction process is a feature vector of
dimension 26 for each of the 22 channels, with a frame
duration of 0.1 secs. This optimized system produces
39% sensitivity and 90% specificity with 23 false alarms
(FA) per 24 hours [9]. This will be our baseline system.

Our focus in this study is to optimize the selection of
channels. This serves two purposes. First, it reduces
the dimensionality of the problem. Second, and more
importantly, our goal is to find a minimal number of
channels that are common across all EEGs that can
provide reasonable levels of performance. Otherwise,
the system will have to adapt to the unique channel
configuration of each EEG or clinical site, and this is
an extremely complex process. The results presented in
this paper use the Any Overlap scoring method [11] in
which true positives are counted when the hypothesis
overlaps with one or more reference annotations. False
positives correspond to events in which the hypothesis
annotations do not overlap with any of the reference

annotations. This method of scoring is popular in the
EEG research community. The relative rankings of the
systems are not sensitive to the scoring method, though
the absolute numbers do change slightly.

II. CHANNEL SELECTION

EEGs are used to diagnose a wide variety of patholo-
gies. Applications include obvious things like seizure
detection and prediction. But an EEG today is also
being used to diagnose psychological disorders, sleep
disorders and head injuries. Further, an EEG is used
to monitor the impact of drug interventions. For each
specific task, spatial information plays a major role.
For example, electrodes placed near the occipital lobe
capture brain activity related to vision whereas mid-
parietal region electrodes collect information related to
waking consciousness.

In this study, we have focused on seizure detection. We
emphasize the importance of using domain knowledge
in the selection of channel configurations instead of
using an ad hoc selection process. An overview of the
channel selection process is given in Figure 2. When
reducing the number of channels from 22 to 20, we
removed the referential channels A1 and A2. These
are attached to the patient’s ears and are generally

 

(a) 22 channels
 

(b) 20 channels

 

(c) 16 channels
 

(d) 8 channels

 

(e) 4 channels
 

(f) 2 channels

Figure 2. An overview of the channel selection strategies that
were employed to reduce the number of channels
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very susceptible to noise. Additionally, all brain events
occurring on those channels can also be observed on
electrodes T3 and T4.

Frontal Polar (FP1 & FP2) channels are mostly ignored
because only 36% of frontal seizures can be observed
on scalp EEGs making automatic detection of frontal
lobe seizures very difficult [8]. The CZ electrode is
utilized throughout all configurations because, due to
its location at the center of the scalp and because it is
attached to 6 adjacent electrodes in the TCP montage,
the CZ electrode is able to detect seizures occurring in
both hemispheres better than any other single electrode.
Only one of the occipital (O1 & O2) electrodes have
been considered in 4 and 2 channel configurations
because the occipital electrodes are always placed close
to each other. Consequently, it is likely that seizure
events occurring near one of the occipital electrodes will
appear on the other as well.

III. EXPERIMENTAL DESIGN AND ANALYSIS

For this study, we have used a baseline system that
integrates CNNs and LSTMS, as shown in Figure 3.
The input tensors are fed to a CNN stage that typically
consists of 3 layers of 2D CNN layers with 16 kernels
of size of 3× 3 and mAx-pooling layers of size 2× 2
to effectively reduce the dimensionality of the input.
Dropout layers are added at the end of each layer except
the very last one to avoid overfitting. The output is then
flattened and fed to a 1D CNN network which acts as a
fully connected network. The output of this pass is fed
to a bidirectional LSTM stage. Exponential Linear Units
(ELU) are used as the activation functions for all stages
except the last stage, which uses a sigmoid activation
function. A mean-square error loss function and Adam
optimizer are also used. Postprocessing is used on the
system output to reduce the false alarm rate.

In Table 1 we summarize the results for each of the
channel configurations shown in Figure 2. The sys-
tem with the 22-channel configuration, as expected,
outperforms the other systems. The 20-channel, 16-
channel and 8-channel configurations produce moderate
reductions in performance. The 4-channel and 2-channel
configurations perform poorly because these configura-
tions lack spatial context.

Unfortunately, the typical system defined here cannot be
applied identically for all the channel configurations that
we have defined for this study because dimensionality
reduction on a small number of channels is a problem.
Applying mAx-pooling with a 2× 2 matrix on all the
layers when using 2, 4, and 8, channels is not possible.
To make a fair comparison and to understand the behav-
ior of a system on low dimensional tensors we have used
two separate approaches for low-dimensional channel
configurations. First, we simply keep the dimensionality

 

Figure 3. A block diagram of the baseline system

of channel tensor intact. Second, we remove one or
more CNN layers whenever we face dimensionality
reduction issues. Modification in number of CNN layers
can be observed in the second column in Table 1.

An ROC curve, which depicts the true positive rate
(TPR) vs. the false positive rate (FPR), is shown in
Figure 4. We compare four systems: 22, 16, 8 and 4

Table 1. Performance vs. channel configuration

2D CNN Sensitivity Specificity FA/24
Ch. Layers (%) (%) Hours
22 3 39.15 90.37 22.83
20 3 34.54 82.07 49.25
16 3 36.54 80.48 53.99
8 3 33.44 85.51 38.19
4 3 33.11 39.32 325.54
8 2 30.66 88.79 28.57
4 1 34.09 39.00 332.15
2 3 31.15 40.82 308.74

 

Figure 4. ROC curves for 22, 16, 8 and 4 channels
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channels. The 22-channel system clearly outperforms
the other three reduced-channel configurations. The
performance differences are greatest for low values
of FPR, which is the region of most interest in this
application. On the other hand, when the FPR is high,
the performance between these systems is minimal.

We also observe that the performance differences be-
tween 16-channel and 8-channel configurations are
small with the 8-channel system performing slightly
better when the FPR is low. This seems to validate the
process used to select these channel configurations that
was based on significant amounts of domain knowledge.

Next, we conducted an experiment to investigate the
importance of including the referential channels A1 and
A2, referred to collectively as Ax. Table 2 presents a
comparison the 2, 4, 8 and 16 channel configurations to
the same configurations with Ax added. We also provide
an ROC curve in Figure 5. The ROC curves demon-
strate that gap in performance between the 18-channel
system and the 10-channel system is much greater than
that achieved without the additional channels. Further,
overall performance with Ax is better than without.

To further probe this, in Figure 6, we compare an
18-channel configuration with Ax channels to a 16-
channel configuration without the Ax channels. The
system using referential channels performs better at low
FPR than the system without referential channels, and
this improvement in performance is not simply due to

Table 2. A comparison of performance demonstrating the
impact of including the Ax channels

No. Chan. Sensitivity (%) FA/24 Hours
w/ Ax w/o Ax w/ Ax w/o Ax w/ Ax w/o Ax

22 20 39.15 34.54 22.83 49.25
18 16 36.65 36.54 37.33 53.99
10 8 30.94 33.44 283.18 38.19
6 4 34.36 34.09 58.15 332.15
4 2 33.06 31.15 47.53 308.74

 

Figure 5. ROC curves for 22, 18 and 10 channel configurations
that include the Ax channels

 

Figure 6. 18-channels w/ Ax vs. 16-channels w/o Ax

the increased channel count. Instead it is an indication
that the referential channels are providing meaningful
information, especially at low FPRs.

IV. SUMMARY

In this paper, we have investigated the impact of ref-
erential channels on seizure detection performance. We
have explored this using a framework based on a hybrid
CNN-LSTM deep learning system. Not surprisingly,
using all channels from a 10-20 EEG configuration
gave best performance: 39.15% sensitivity and 90.37%
specificity with 22.83 FA per 24 hours. Selection a
moderately reduced number of channels (e.g., 16 and
8) resulted in a small but measurable degradation in
performance. Adding referential channels to these con-
figurations improved performance particularly in the
low FPR region of primary interest in this application.

Deep learning systems are extremely sensitive to train-
ing conditions. Initialization of models and randomiza-
tion of the data play a far too significant role in the
overall performance. This complicates these types of
parameter studies because the system must be individ-
ually optimized for each condition. This is an ongoing
issue that we are addressing in future research.
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