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Abstract—Mild Traumatic Brain Injury (mTBI) is a signif-
icant public health problem. The most troubling symptoms
after mTBI are cognitive complaints. Studies show measur-
able differences between patients with mTBI and healthy
controls with respect to tissue microstructure using diffusion
MRI. However, it remains unclear which diffusion measures
are the most informative with regard to cognitive functions
in both the healthy state as well as after injury. In this
study, we use diffusion MRI to formulate a predictive model
for performance on working memory based on the most
relevant MRI features. As exhaustive search is impractical,
the key challenge is to identify relevant features over a
large feature space with high accuracy within reasonable
time-frame. To tackle this challenge, we propose a novel
improvement of the best first search approach with crossover
operators inspired by genetic algorithm. Compared against
other heuristic feature selection algorithms, the proposed
method achieves significantly more accurate predictions and
yields clinically interpretable selected features (improvement
of r2 in 8 of 9 cohorts and up to 0.08).

I. INTRODUCTION

Mild traumatic brain injury (mTBI) is a significant pub-
lic health issue with millions of civilian, military, and
sport-related injuries occurring every year [1]. Moreover,
20− 30% of patients with mTBI develop persistent symp-
toms months to years after initial injury [2]. Cognitive
complaints are important due to their significant impact on
the quality of life. In this study, we examine the specific
cognitive subdomain of working memory in relation to
the underlying tissue microstructure by accessing diffu-
sion MRI and predict performance on working memory.
Defining specific imaging biomarkers related to cognitive
dysfunction after mTBI would not only shed light on the
underlying pathophysiology of injury leading to cognitive
impairments, but also help to triage patients and offer
a quantitative means to track recovery in the cognitive
domain as well as track efficacy of targeted cognitive
therapeutic strategies [3]. Tools to detect injury, predictive
of symptoms are badly needed.

Diffusion MRI is a powerful non-invasive method to probe
brain tissue microstructure after mTBI [4][5]. Diffusion
tensor imaging (DTI) and diffusion kurtosis imaging (DKI)
have been used to reveal areas of abnormal fractional
anisotropy (FA) and mean kurtosis (MK) [4] (See Tab. I).
More recently, multi-shell diffusion imaging was used to

acquire compartment-specific white matter tract integrity
metrics to investigate the biophysical changes in mTBI [5].
In particular, measures of axon injury in mTBI may be as-
sociated with alterations in working memory performance
[6][7].

A few previous works apply feature analysis to identify
injury in mTBI and to predict clinical status of mTBI
patients. Lui et al. used Minimum Redundancy and Max-
imum Relevance (mRMR) approach to identify the most
relevant features for classifying patients between mTBI
versus control [8]. Minaee et al. proposed a combination
of linear regression and exhaustive MRI feature selection
to predict neuropsychological (NP) test scores [9]. Though
they reported achieving reasonable accuracy, these methods
were developed using very small datasets (< 50 subjects)
and explored only a small set of handcrafted imaging
features (10-15 features). Due to limited datasets, it is not
feasible to apply deep learning to entire brain volumes
obtained with multiple diffusion metrics for either task
(mTBI classification or prediction of NP scores). To over-
come this challenge, Minaee et al. [10] applied Adversarial
Auto-encoder [11] to extract latent features that could then
be used to reconstruct image patches, and adopted a bag
of visual words (BoW) representation to describe each
metric in each brain region, where the visual words were
obtained by clustering the latent features. Despite a high
classification accuracy [10], feature selection after BoW
was accomplished by greedy forward search, which may
produce suboptimal feature subset that is quite far from the
optimal one.

There are several other works that use imaging features to
study mTBI, such as dictionary learning [12] for dimen-
sionality reduction and network-based statistics analysis
[13]. However, since feature selection over a large feature
space is prohibitively expensive, these works either 1)
are limited in the number of initial features considered,
which relies on prior knowledge to handcraft features
and may potentially miss the most relevant ones or 2)
project an originally large feature dimension to a low
dimension space; a downside of such approaches is that
the transformed features are often hard to interpret.

To overcome these limitations, we leverage a powerful



feature selection method known as greedy best first search
(Greedy BFS) [14], which has been shown to be more
effective than the more typically adopted greedy forward
or backward search method or the genetic algorithm. We
further propose a novel improvement over the Greedy BFS
method. First, sufficiently large (280) number of statistic
features are extracted from 7 anatomic white matter brain
regions and 8 diffusion MRI metrics. Gradient Boosting
Tree (GBT) is selected for accurate regression and repeated
stratified cross-validation is used to avoid over-fitting.
During the search, each feature subset is evaluated by the
cross validation r2 score by the GBT model. The proposed
improvement to the Greedy BFS method, known as BFS
with crossover, uses crossovers to jump over the feature
subset graph so that a broader feature subset can be visited
to produce a more accurate result.

Compared to using greedy forward or backward search or
genetic search, Greedy BFS method yielded greater accu-
racy in the prediction of working memory subtests’scores
from difussion MRI features. The BFS with crossover fur-
ther improved the accuracy over greedy BFS consistently.
Interestingly, the features that were chosen frequently by
the BFS with crossover method are those diffusion MRI
metrics that represent the underlying tissue microstructure.

II. METHOD

A. Dataset and Feature Extraction

The dataset contains 154 subjects, among which 70 are
normal controls (NC) and 84 are mTBI. Age-appropriate
WAIS-IV subtests [15] were performed to assess perfor-
mance of working memory, including Digit Span Forward
(DSF), Digit Span Backward (DSB), and Letter-Number
Sequencing (LNS). For each subset, separate models are
developed for the control and mTBI populations, respec-
tively, in order to discover normal and pathologic mi-
crostructure features that inform on the working memory.
In addition, a combined model is also developed.

Based on previous diffusion studies in mTBI patients, 8
metrics from DTI, DKI and compartment specific white
matter modeling [7][5] were chosen, summarized in Ta-
ble I. For compartment specific metrics, voxels with FA
< 0.4 were excluded as recommended to interrogate single-
fiber orientations [16] [17]. Instead of considering the
entire brain volume, we compute several statistics of each
metric over 7 major white matter brain regions: left rostral
(LR), right rostral (RR), left middle (LM), right middle
(RM), left caudal (LC), right caudal (RC), and corpus col-
lasum (CC). 5 statistics are computed for each metric and
each region: mean, standard deviation, skewness, kurtosis,
entropy. In total, there are 280 initial features.

B. Wrapper Feature Selection as Graph Search Problem

There are three main categories of feature selection meth-
ods: filter, wrapper and embedded [18]. Filter based feature
selection ranks the feature subsets based on some criteria

Table I
MRI METRICS DESCRIPTION

Diffusion Imaging Metrics Description

DTI FA Fractional Anisotropy
MD Mean Diffusion

DKI MK/AK Mean/Axial Kurtosis

Compartment Specific

AWF Axonal Water Fraction
DA Intra-axonal diffusivity

De-par Extra-axonal axial diffusivity
De-perp Extra-axonal radial diffusivity
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Figure 1. An example of 4 feature graph with crossover operator, each
node represent a possible feature subset

such as the correlation between the individual features and
the target outcome and the correlations among the fea-
tures, independent of the prediction/ classification method.
Wrapper based approach would train multiple prediction/
classification models using different feature subsets and use
validation scores to select the best feature subset. Embed-
ded approach constrains the model parameters related to the
input features to be sparse, and conducts feature selection
during model construction. In general, filter approach is
computationally fastest but often yields sub-optimal feature
subsets; whereas the wrapper method is the most accurate
but is computationally costly. In this work we follow the
wrapper approach.

The wrapper based feature subset selection can be gener-
alized as a graph search problem [19]. Consider a dataset
with N samples {X(i), y(i)}i=1,2...N , where X(i) repre-
sents the features for the ith sample, and y(i) the ground
truth outcome. If each data sample X(i) has M features,
the number of total possible feature subsets is 2M .

Then consider a directed weighted graph G(V,E). Each
vertex is represented by a binary vector in M dimensions,
Vi = {0, 1}M , indicating whether each feature is selected.
Two vertices Vi and Vj are connected if there is only one
bit difference, which means only the state of one feature is
different (See Fig. 1 ). G(V,E) contains 2M vertices, with
in-degree and out-degree of each vertex both equals to M .
The weight of an edge is assigned to be the difference
between the performance scores of connected vertices,
which is usually calculated through cross-validation [19],

E(Vi, Vj) = score(Vj)− score(Vi) (1)



Algorithm 1 Greedy Best First Search
procedure GREEDY-BFS(X, y, patience)

open← {0T }, close← ∅, best← {0T }, i← 0
while True do

current← open.popmax() . pop the node in
the open list with maximum score

close.enqueue(current)
if current.score > best.score then

best← current
i← 0

else
i← i+ 1

end if
if i > patience then

return best
end if
for child ∈ current.adjacencylist do

if child /∈ open
∧
child /∈ close then

child.crossvalidate(X, y)
open.enqueue(child) . add child into

the open list
end if

end for
end while

end procedure

with
|Vi − Vj | = 1 (2)

Any path P connecting vertex Vi and another vertex Vj

has length equals to the sum of the edge weights along
this path:

P (Vi, Vj) = E(Vi, Vi+1) + ...+ E(Vj−1, Vj) (3)

From the definition of Eq. (1), it is easy to show that:

P (Vi, Vj) = score(Vj)− score(Vi) (4)

Therefore, the feature selection problem is to find the
longest path P ∗ from vertex 0 to any possible vertex in
graph, which is equivalent to searching the vertex V ∗ with
the best score:

V ∗ ← argmax
Vi∈G

score(Vi)− score(0T ) (5)

C. Greedy Best First Search Algorithm

Since the graph has 2M nodes, an exhaustive traverse
would be prohibitive if M is large. Thus, a heuristic is
usually used to avoid exhaustive search without losing
accuracy significantly. Some classical heuristic approaches
are: sequential feature selection (SFS), Hill Climbing.
Meta-heuristic is another family of algorithms that sim-
ulates natural phenomena, including simulated annealing
(SA), swarm algorithm such as whale optimization (WO)
and genetic algorithm (GA).

Algorithm 2 Greedy Best First Search Crossover Operator
procedure GREEDY-BFS-X(X, y, patience)

open← {0T }, close← ∅, best← {0T }, i← 0
while True do

if cross&cross.score > current.score then
current← cross
open.dequeue(cross)

else
current← open.popmax()

end if
close.enqueue(current)
if current.score > best.score then

best← current
i← 0

else
i← i+ 1

end if
if i > patience then

return best
end if
local← ∅
for child ∈ current.adjacencylist do

if child /∈ open
∧

child /∈ close then
child.crossvalidate(X, y)
local.enqueue(child)

end if
end for
open.merge(local) . merge local queue with

open queue
first← local.popmax()
second← local.popmax()
cross← first+ second− current
if cross /∈ open

∧
child /∈ close then

open.enqueue(cross)
end if

end while
end procedure

In this paper, we revisit and improve a heuristic approach:
greedy best first search (Greedy BFS). Greedy BFS is
initially proposed for robots’ path finding and later applied
to feature selection [20] [14]. However, this method did
not get much traction due to the limited feature subset size
and computation power at that time. Recently researchers
start to rediscover it and its variations for problems such
as sparse representation [21].

As shown in Algorithm 1, greedy BFS algorithm starts at
one node and iteratively selects next node Vi maximizing
score(Vi). Each time the node with the best score “current”
node in Algorithm 1) in the priority queue (“open” queue
in Algorithm 1) is popped out, its undiscovered children are
evaluated and pushed into the priority queue. This process
is repeated until the queue is empty or the best accuracy
has not been updated for a certain number of iteration
(patience).



Greedy BFS is a superset of sequential floating feature
selection (SFFS) [22], which is in turn a superset of
sequential feature selection (SFS). SFS includes greedy
forward and backward. When the patience is set to infinity
it is equivalent to exhaustive search.

D. Best First Search with Crossover Operator

Despite its potential, Greedy BFS is not widely applied to
feature selection because it is computationally costly. In
each step, it evaluates all children of the current vertex,
the number of which equals to M , the out-degree of
vertex. To solve this problem, we propose a novel algorithm
combining Greedy BFS search and crossover operator.

The idea of crossover operator comes from the genetic
algorithm [23], a classical meta-heuristic optimization ap-
proach that simulates natural selection process. The core of
the genetic algorithm is mutation and crossover operator.
Mutation randomly changes one or several bits of popula-
tion. Crossover takes the two best vertices that share the
same parent and generates a new child from 3 possible
operations as illustrated in Fig. 2.
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Figure 2. 3 types of cross over operations over the best and second best
children of one parent. a. merge features from both children, equivalent
to skip down; b. add one feature to one child, remove one feature from
another child, equivalent to replace; c. remove one feature from each
child, equivalent to skip up. All three operations can be represented by the
simple arithmetic operation: Vcrossover = Vchild1 + Vchild2 - Vparent

After a node with the best score in the current queue is
popped out, the BFS with crossover adds all its children to
the priority queue. While this step is the same as Greedy
BFS, a crossover operation is conducted between the best
two children (“first” and “second” in Algorithm 2) of the
node to identify a crossover node. This node is also added
to the queue. There are three possible conditions depending
on the relation of the two children with their parent (See
Fig. 2).

Compared to Greedy BFS, the crossover node, which is
likely a good node with high score, will be evaluated with
the same priority as all the children of the current node.
With Greedy BFS, the crossover node will have to be
evaluated along with all the children of the “first” node.
With crossover, if the “cross” node is actually better than
“first”, the evaluations of other children of “first” will be
skipped. However, there is no guarantee that the “cross”
node is better than the children node of “first”, so BFS
with crossover may not always yield better results than
Greedy BFS.

E. Gradient Boosting Tree

Gradient boosting tree (GBT) is chosen as an estimator
for its simplicity and robustness. The idea of boosting is
to combine the output of many weak models to produce a
powerful ensemble [24]. Gradient boosting adds the idea of
steepest descent on top of boosting [25]. It iteratively adds
new weak model to correct the largest previous error. In
addition, decision tree is often chosen as a weak estimator.
GBT has strong generalization ability and robustness to
errors [24]. In our preliminary work, we have compared
GBT with other regression methods including Support
Vector Machine and Neural Network. For the r2 result of
Greedy DSB NC test, SVM and NN achieve 0.3455 and
0.2501 respectively, which is significantly lower than GBT
(0.6200). Hence, we choose to present only the perfor-
mance of GBT under different feature selection methods.

F. Repeated Stratified K-fold Cross Validation

K-fold Cross-validation (CV) is widely applied method to
estimate model performance [24]. Here, we use 5-fold cross
validation with stratified CV split, which splits the entire
dataset into 5 folds with the same distribution of labels
[26][24]. In our case the labels are continuously distributed
in [−3, 3]. We quantize this range to 5 bins and each fold
would have the same percentage of the samples in each
bin, as the whole dataset.

III. RESULTS AND DISCUSSION

A. Prediction results between BFS with Crossover and
other heuristic algorithms

For each NP test, we develop three GBT models using con-
trol subjects, mTBI subjects, and all subjects, respectively.
For each model, we perform feature selection using the
proposed BFS with Crossover method as well as several
other methods including greedy forward, greedy backward
and genetic algorithm.

The average r2 score among all validation samples is
chosen to assess of model performance. r2 is defined as
the portion of variance explained:

r2 ← 1− MSE(y, ŷ)

V ar(y)
(6)

Table II summarizes the performance of different feature
selection methods. Greedy backward search yields poor
performance, suggesting that this is not a viable method
when the feature space is very large. The greedy forward
and genetic algorithm are substantially better than greedy
backward, but the r2 score is still mostly below 0.5 (See
Tab. II). The Greedy BFS provides substantial improvement
over these two methods in all the models. Finally, BFS
with crossover achieves further improvement over greedy
BFS in all cases, most of which yield r2 scores above 0.5.
Especially, the performance on DSB mTBI improves from
0.5193 by Greedy BFS to 0.6005 by BFS with crossover



Table II
PREDICTION PERFORMANCE USING GRADIENT BOOSTING TREE AND DIFFERENT FEATURE SELECTION METHOD. FOR THE BFS METHOD, THE

PATIENCE PARAMETER IS SET TO 25. FOR GBT, NUMBER OF TREE = 100, WITH DEPTH SEARCHED FROM 2 TO 5. COLUMNS 2-6 ARE r2 SCORES.

Meta-heuristic Greedy Best First Search BFS with Crossover Results
Test/Cohort Genetic Algorithm Forward Backward Greedy BFS BFS with Crossover Pearson Coefficient p-value

DSF NC 0.4298 0.2074 -0.0649 0.4529 0.5055 0.75* 0.0109
DSB NC 0.4982 0.6200 0.2307 0.6408 0.6408 0.83* 0.0051
LNS NC 0.3599 0.4206 -0.1582 0.5182 0.5806 0.79* 0.0138

DSF mTBI 0.3510 0.3639 -0.3072 0.4396 0.5090 0.74** 0.0027
DSB mTBI 0.5186 0.5080 0.1321 0.5193 0.6005 0.80** 0.0005
LNS mTBI 0.5370 0.4749 -0.0763 0.5671 0.6036 0.82* 0.0013

DSF combine 0.2086 0.2895 -0.1444 0.3709 0.3848 0.64** 0.0019
DSB combine 0.2007 0.2089 -0.1592 0.4075 0.4491 0.69** 0.0018
LNS combine 0.2055 0.3931 0.1702 0.4813 0.4874 0.72*** 0.0003

Ground Truth Value

Figure 3. Comparison between ground truth label values and predicted
label values for the DSB test, using the model developed for the mTBI
population. Data shown here are from the validation samples in all five
folds.

(See Tab. II). The relatively high r2 scores and the scatter
plot in Fig. 3 indicate a reasonably good fit.

Last two columns of Table II present the Pearson corre-
lation between the ground truth and the predicted values
by BFS with crossover and the corresponding p-value,
which indicates the probability that an uncorrelated system
produces such computed Pearson correlation. It could be
observed that for most of the tests the Pearson correlation
is larger than 0.7 with p value less than 0.05, which for
biological systems indicates a strong and reliable relation-
ship.

B. Selected Features

The features chosen by BFS with crossover are analyzed
since they produce best accuracy. The number of times
a diffusion MRI metric is chosen is accumulated and
summarized in Table III.

For predicting the LNS test performance, it is interesting
to observe that DA (Intra-axonal diffusivity, See Table I)
metric is selected most often, for the modeled developed
for the NC and mTBI cohorts, respectively. LNS is the most
complex working memory task among these three tests and
may have greater dependency on specific microstructural

Table III
SELECTED MRI METRICS BY BFS WITH CROSSOVER

Test/Cohort Metrics Chosen Frequency
DSF NC FA(5), De-perp(4), De-par(4), MK(2), AK(2),

AWF(1), DA(1), MD(0)
DSB NC De-par(3), De-perp(2), MK(2), FA(2), AK(2),

MD(1), AWF(1), DA(0)
LNS NC DA(4), AWF(3), De-perp(2), De-par(1), AK(1),

MK(0), MD(0), FA(0)
NC SUM De-perp(8), De-par(8), DA(5), AWF(5), AK(5),

FA(5), MK(4), MD(1)
DSF mTBI De-perp(5), De-par(4), AWF(3), MK(2), DA(2),

AK(1), MD(0), FA(0)
DSB mTBI AWF(10), AK(5), MK(3), FA(3), DA(2), MD(1),

De-perp(1), De-par(0)
LNS mTBI DA(6), AWF(3), De-par(3), AK(3), MK(2), MD(1),

FA(1), De-perp(1)
mTBI SUM AWF(16), DA(10), AK(9), De-perp(7), De-par(7),

MK(7), FA(4), MD(2)
DSF combine MD(5), DA(4), De-par(4), AWF(2), AK(2), FA(1),

MK(0), De-perp(0)
DSB combine AWF(4), DA(3), De-perp(3), MK(2), De-par(2),

AK(2), MD(1), FA(1)
LNS combine FA(5), AK(5), De-par(4), AWF(4), DA(2), De-

perp(2), MK(1), MD(1)
combine SUM AWF(16), DA(10), De-par(10), AK(9), De-perp(7),

FA(7), MK(3), MD(2)

integrity more so than easy tasks. DA reflects axon injury
or integrity and has been previously implicated in mTBI
[5].

Additionally, it is noted that when counting the total
number of times a metric is chosen over all three working
memory tests, we see that for the models developed for
the mTBI and control populations, respectively, the most
frequently chosen features include De-par, De-perp, AWF,
and DA. These compartment-specific metrics have been
shown to be more sensitive to the underlying microstructure
than others, such as DTI and DKI, which are known to be
non-specific and empiric (See Table I).

Comparing the performances of separate models for the
different cohorts (See Table II), we see that we are able to
predict well with the models for the mTBI and NC cohorts,
respectively. Furthermore, we see that the combined models
(mTBI and NC together) are not as good with a weaker
correlation coefficient for all three prediction tasks. The
features chosen among these three populations for predict-



ing the same NP score also differ (Table III). This suggests
that mTBI and NP are two distinct populations in terms of
white matter microstructure, in keeping with what we know
about mTBI and white matter injury.

IV. CONCLUSION

In this work, a new feature selection algorithm for predict-
ing performance on working memory using diffusion MRI
features is proposed. The algorithm is able to search over
a large feature space effectively and achieved consistently
better performance than other popular feature selection
methods. This novel feature selection method is applicable
to other classification and regression problems with large
feature space and limited training data.

The prediction models using the selected features achieved
quite high Pearson Correlation (> 0.7 in all cases) with
very low p-value (< 0.002), demonstrating statistically
significant agreement between the predicted scores and
the measured working memory test scores. These results
suggest that optimizing feature selection for predicting
NP test performance has a great potential to reveal the
most important imaging features that would be related
to cognitive functions or cognitive impairments in mTBI
patients.
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