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Abstract—  Seismocardiographic signals (SCG) are known 

to correlate with mechanical cardiac activity and may be 

used for monitoring patients with cardiovascular disease. 

However, SCG variability is not well understood and may 

interfere with signal utility. In the current study, the SCG 

signals were acquired in 5 healthy subjects during regular 

breathing along with ECG and respiratory flow 

measurements. In addition, SCG waveforms were recorded 

during breath hold at end inspiration as well as end 

expiration. The SCG events were identified and segmented 

using ECG events. SCG waveforms during regular 

breathing were separated into two clusters using 

unsupervised machine learning. The variability was 

assessed for the clustered and un-clustered SCG by 

analyzing the Dynamic Time Warping (DTW) distances of 

SCG waveforms in the time domain. The inter-group 

variability between the normal breathing clusters and 

breath hold suggested that cluster 2 events were more 

similar to end expiration events while no clear trend was 

observed for cluster 1. The intra-group variability was 

reduced by approximately 19% for regular breathing 

clusters and 42% during breath hold compared to the un-

clustered SCG during normal breathing. The reduced 

variability during breath hold suggests the utility of SCG 

recording at breath hold since variability reduction can lead 

to more robust methods for longitudinal patient 

monitoring. 

Keywords- Seismocardiogrphy, variability, dissimilarity, 

monitoring, respiratory effect. 

I. INTRODUCTION 

Seismocardiographic (SCG) signals are chest wall 

vibrations due to cardiac activity[1]. Early studies [2]–[7] 

suggested that the mechanical processes involved in 

cardiac activity such as valve closures, blood momentum 

changes, cardiac muscle contraction are likely sources of 

these vibrations. SCG signals may provide useful 

information regarding cardiac function and, therefore, 

may be helpful in the diagnosis and monitoring of 

cardiovascular conditions. Some studies [8]–[10] 

extracted different cardiac parameters such as heart rate 

or systolic time intervals from SCG signals. Other 

studies[11]–[13] extracted respiratory information from 

the SCG signals. 

SCG is typically measured over the chest surface (rather 

than directly on the heart) and respiration is known to 

cause morphological variabilities in SCG signal. This 

may be due to the change in heart shape and positioning, 

along with variations in intrathoracic pressure (i.e. 

pressure around the heart) during respiration. These 

variabilities may mask important SCG morphological 

features with diagnostic value, or conversely, may 

introduce errors in SCG interpretation. Hence, SCG 

potential utility should be improved by decreasing 

variability and/or enhancing our understanding of 

variability sources.  The latter may help both account for 

SCG variability, but also serve as useful features to help 

improve the diagnostic predictive value.    

Previous studies [9], [14] used respiratory information to 

group SCG events into their respiratory phases 

(respiratory flow or lung volume phases) to help reduce 

this variability. However, a recent study [15] suggested 

that SCG waveforms were better grouped using 

unsupervised machine learning based on minimum intra-

group heterogeneity.  This appears to stem from an 

observation that SCG event grouping based on lung 

volume phases may yield more homogeneous data than 

that based on respiratory flow phase. 

Figure 1. Experimental Setup 

There is little published information about SCG 

variability during breath hold.  This pilot study aims to 

quantify SCG variability during regular breathing in 

comparison with that at breath hold as during breath hold 

some of the factors causing variability (such as 

intrathoracic pressure) are almost constant. 

II. MEASUREMENT OF THE SIGNALS 

After IRB approval, 5 healthy male subjects with no 

known medical history of cardiovascular disease were 



recruited for the study. Subject’s demographics are listed 

in table 1. 

  Table 1. Subjects information 

Age (years) 27.6±3.6 

Height (Inches) 65.8±2.7 

Weight (lbs.) 140.4±8.6 

BMI 23.1±2.3 

Subjects were asked to fast from food, caffeinated drinks 

and avoid strenuous exercise for at least 4 hours prior to 

the study to help exclude potential effects of exercise and 

eating on physiological processes affecting SCG. The 

experimental setup is shown in Figure 1. 

Respiration flow was acquired by a spirometer (Model: 

SP-304, iWorx Systems, Inc., Dover, NH). The ECG 

signal was acquired by IX-B3G biopotential recorder 

(iWorx Systems, Inc., Dover, NH). Seismocardiographic 

signals were acquired using a tri-axial accelerometer 

(Model: 356A32, PCB Piezotronics, Depew, NY) which 

was affixed on the chest surface using double-sided 

medical grade tape at the 4th intercostal space near the left 

lower sternal border. The accelerometer measured 

acceleration in the dorsoventral, lateral and craniocaudal 

directions. The current study focusses on the 

dorsoventral-component of the acceleration 

(perpendicular to the chest wall). The SCG signal was 

amplified using a signal conditioner (Model: 482C, PCB 

Piezotronics, Depew, NY) with a gain of 100-fold. 

Subjects were asked to rest on a 45-degree inclined bed 

head up position with their feet extended horizontally. 

Data was collected continuously for 3 minutes of regular 

breathing followed by 20~30 seconds of breath hold after 

end inspiration, then 30 seconds of regular breathing and 

then 20~30 seconds of breath hold after end expiration. 

During breath holding effort was made to maintain 

atmospheric intrapulmonary pressure by keeping the 

mouth and glottis open. A sampling frequency of 10 kHz 

was used for data acquisition. The acquired data was 

analyzed using Matlab (Matlab 2013, Mathworks, 

Natick, MA). 

III. SIGNAL ANALYSIS 

A. FILTERING 

Previous studies [5], [7], [16] suggested that the 

frequency content of SCG wave ranges from 0.5 Hz ~ 50 

Hz. Hence the SCG and ECG signals were forward-

backward filtered using a 4th order Chebyshev 2 type 

band-pass filter with a cut off 0.5-50 Hz with a stopband 

attenuation of 15 dB to reduce background noise 

(electronic noise~ 60 Hz) and baseline wondering due to 

respiration (<0.5 Hz). In addition, a moving average filter 

of order 5 was employed to further smooth the signal.  

B. SCG EVENTS SEGMENTATION 

The SCG signal was segmented into SCG events (also 

called heartbeats) using the R peaks of the ECG signal, 

which were detected using Pan Tomkins algorithm [17]. 

Each SCG event was selected to start 0.1 seconds before 

the R peak of the corresponding ECG and ends at 0.1 

seconds before the next R peak.  

C. CLUSTERING SCG EVENTS 

After segmentation, the SCG events were down sampled 

to 1000 Hz and were clustered based on their morphology 

using unsupervised machine learning. As the morphology 

of a SCG event may be best described by the signal 

amplitudes (at each data point of the event), amplitude 

values of SCG events were used as the feature vector 

input to the clustering algorithm. Here, k-medoid 

clustering was employed with dynamic time warping 

(DTW) as a dissimilarity measure. This clustering 

strategy has shown higher accuracies over other methods 

for shape-based (i.e., morphology-based) clustering of 

time series[18]. 

DTW is often used in time series clustering[18] due to its 

ability to deliver a more accurate dissimilarity measure 

of the signal morphologies determining the optimal 

“global alignment” between two time sequences by 

exploiting the temporal distortions between them [19]. In 

contrast, commonly used Euclidean distance may deliver 

suboptimal results when the time sequences are not 

aligned in time even if they have similar morphologies. 

A representation of the differences between DTW and 

Euclidean distance is shown in Figure 2 [20]. As SCG 

events are nonlinearly stretched due to heart rate 

variability, high variations in heart rate between different 

SCG events can cause significant mis-alignments, which 

would lead to discrepancies in the clustering results if 

Euclidean distance is used as a dissimilarity measure. 

Figure 2. Associated points between two time series when the 

dissimilarity is measured with (a) Euclidean and (b) DTW 

measures. 



The clustering algorithm was implemented in MATLAB 

and is shown below. 

Algorithm: 

Inputs: Number of clusters= K. Set of SCG events:         

 {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑖 … . , 𝑋𝑁} where each event is defined 

by its feature vector (amplitude) as                                      

𝑋𝑖 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑙𝑖
}. N is the number of events 

Step 1: Initialize  𝐶1, … , 𝐶𝑗 , … 𝐶𝑘 as the medoids  

Step 2: For each 𝑋𝑖 find the nearest 𝐶𝑗  and assign 𝑋𝑖 to 

cluster 𝑗 using DTW as the distance measure 

Step 3: Update 𝐶𝑗 based on the clustered events from 

previous step using equation 1. 

𝐶𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦∈{𝑋1𝑗,𝑋2𝑗,…,𝑋𝑖𝑗 ,...,𝑋𝑛𝑗} ∑ 𝑑𝑡𝑤(𝑦, 𝑋𝑖𝑗)
𝑛𝑗

𝑖=1                (1) 

where, 𝑋𝑖𝑗 is the 𝑖𝑡ℎ event belongs to cluster 𝑗 and 𝑛𝑗 is 

the number of events belong to 𝑗 after step 2. 

Step 4: repeat step 2 and 3 till none of the cluster 

assignments change. 

The time complexity of DTW is 𝛩(𝑙2), where 𝑙 is the 

length of the SCG event [21].  To reduce the time 

complexity (and the computational time) of clustering in 

the current study, SCG events were down sampled to 

1000 Hz.  Prior to clustering, SCG events were 

normalized by their maximum amplitudes, which is not 

expected to affect DTW measure. 

The elbow method was used to determine the optimum 

number of clusters by determining the fewest number of 

clusters that optimizes intra-cluster variance[15]. The 

intra-cluster variability was measured using equation 2, 

which calculates the average sum of distances (SOD) 

from each event to its cluster medoid. Here, 𝑋𝑖𝑗 is the 𝑖𝑡ℎ 
events belonging to cluster medoid 𝐶𝑗 and 𝑛𝑗 is the 

number of events belong to 𝐶𝑗. 𝑁 is the total number of 

events used in the clustering. 

𝑆𝑂𝐷 =
1

𝑁
∑ ∑ 𝑑𝑡𝑤(𝐶𝑗 , 𝑋𝑖𝑗)

𝑛𝑗

𝑖=1
𝑘
𝑗=1                                (2) 

 

As shown in Figure 3, an elbow shape was observed 

when the number of clusters was 2, suggesting that 2 

clusters would lead to optimal intra-cluster variance with 

fewest number of clusters. Previous studies on clustering 

SCG events during the breathing cycle have chosen same 

number of clusters [15].  

IV. RESULTS AND DISSCUSSION 

To describe the clustering distribution during 

respiration, the timing of the clustered SCG events (as 

described by the time of their respective R peaks) was 

plotted on in Fig 4 in relation to the respiratory flow 

rate and lung volume (i.e. integral of the flowrate, see 

Figure 4).  

Here, four respiratory phases are shown in Figure 4, 

where INSP, EXP, HLV and LLV denote inspiration, 

expiration, high lung volume and low lung volume, 

respectively.  

 

 

 

 
Figure 3. Average SOD for different number of clusters. 

Figure 4. The four respiratory phases labeled in a simplified 

lung volume waveform Here, INSP, EXP, HLV and LLV 

denote inspiration, expiration, high lung volume and low 

lung volume, respectively. 



Figure 5 shows the cluster distribution on these four 

respiratory phases where SCG events belongs to cluster 

1 and cluster 2 are labeled as blue ‘o’ circles and red 

‘∇’triangles, respectively. These cluster distribution 

results showed that clusters are not separated entirely 

based on respiratory flow rate (i.e. by phase of inspiration 

vs expiration) or by lung volume. The regions HLV-INS 

and LLV-EXP were well separated compared to HLV-

EXP and LLV-INS which showed more mixed clustering 

distributions. A recent study showed similar clustering 

patterns during normal breathing[15].  

The cluster pattern was consistent in all study subjects 

and may be caused by changes in intrathoracic pressure, 

heart position (i.e. relative location of SCG sensor and 

heart), heart rate, or movements of the chest wall and 

diaphragm during breathing. 

Acquiring SCG during different breath hold may help 

elucidate possible factors affecting SCG morphology. 

This may be possible since there are much smaller 

variations in intrathoracic pressure, heart position and 

chest wall movement during breath hold compared to 

during normal breathing. Therefore, SCG was acquired 

at two different breath hold states, namely, end 

inspiration and end expiration, which correspond to low 

and high intrathoracic pressures, respectively. Here, 

subjects were asked to breath regularly without taking 

deep breaths then perform breath hold with glottis open 

at end inspiration or end expiration. This was done to 

maintain intrathoracic pressures differences that are 

comparable to those of normal breathing. The acquired 

SCG morphology during breath hold were compared 

with that of normal breathing before and after clustering. 

The following section discusses this comparison in detail. 

To quantify how two waveform groups are dissimilar, the 

intra and inter-group DTW distance were used. The 

following equations were used to calculate the intra and 

inter-group DTW distances. 

𝐼𝑛𝑡𝑟𝑎ꟷ𝑔𝑟𝑜𝑢𝑝 𝐷𝑇𝑊 =
1

𝑛1+𝑛2
[∑ 𝑑𝑡𝑤(𝐶1, 𝑋𝑖1) +

𝑛1
𝑖=1  

                                                           ∑ 𝑑𝑡𝑤(𝐶2, 𝑋𝑖2)𝑛2

𝑖=1 ]  (3) 

𝐼𝑛𝑡𝑒𝑟─𝑔𝑟𝑜𝑢𝑝 𝐷𝑇𝑊 =
1

𝑛1+𝑛2
[∑ 𝑑𝑡𝑤(𝐶1, 𝑋𝑖2) +

𝑛1
𝑖=1  

                                                           ∑ 𝑑𝑡𝑤(𝐶2, 𝑋𝑖1)𝑛2

𝑖=1 ]   (4) 

Here, 𝑋𝑖1, 𝑋𝑖2 are the 𝑖𝑡ℎ SCG event belonging to group 

1 and group 2, respectively while 𝐶1  and 𝐶2  are the 

respective cluster medoids. And 𝑛1, 𝑛2 are the total 

number of events belong to group 1 and 2, respectively. 

Well separated groups are expected to have relatively low 

Figure 5 Cluster distribution in lung volume and 

flowrate space for all subjects. The blue circle 

represents cluster 1 while red triangles shows cluster 2 

locations. The lung volume and flow rate axes were 

normalized to have a range of unity. 



intra-group DTW distance and high inter-group DTW 

distance. 

The intra and inter-group DTW distances for normal 

breathing and breath hold are shown in Figure 6.  

The top graph shows that distance for the two clusters 

identified from the normal breathing data.  The bottom 

graph shows the distance for another two SCG groups, 

namely, the end expiration and end inspiration during 

breath hold. 

Figure 6 suggests that the intra-group DTW distances for 

the breath hold groups are significantly smaller than 

those for normal breathing, which implies that SCG 

during breath hold has less variability.  This result may 

be due to the less variation of intrathoracic pressure and 

heart location during breath hold. In addition, the inter-

group variability was higher than intra-group distance, 

suggesting appropriate separation between groups for 

both Figure 6(a) and (b). 

Furthermore, the inter-group DTW distance between 

normal breathing clusters and breath hold SCG were 

compared and shown in Figure 7. 

 

Figure 7 shows that the inter-group distance between 

breath hold at end inspiration and expiration on one hand 

and (a) cluster 1 and (b) cluster 2 on the other hand.  

Figure 7 (b) shows that cluster 2 tended to have smaller 

distance to end expiration than end inspiration.  This 

result is consistent with the fact that cluster 2 (see Figure 

4) occurs at LLV which includes end expiration. Figure 

7 (a) suggests that cluster 1 may be closer to either end 

inspiration or expiration breath hold. This may be 

because consistent control of end inspiration is harder 

(than end expiration) since it involves effort by the 

diaphragm and chest muscles that may not be 

consistently reproducible.   

To investigate the SCG intra-group variability, intra-

group distances were calculated under breath hold 

conditions and for normal breathing before and after 

clustering.  These results are shown in Figure 8. 

Figure 8 suggested that the average intra-group 

variability reduced significantly by 19% (P<0.05) after 

clustering and by 42% (P<0.05) during breath hold. This 

decrease in variability suggests possible utility for SCG 

measurements under breath hold conditions. A recent 

study[22] reported similar decrease in intra-group 

variability for normal breathing. It is to be noted that for 

critically ill patients, breath hold conditions are difficult 

Figure 6. Intra and inter-group DTW distance in all subjects 

for (a) the two clusters obtained from SCG during normal 

breathing. (b) end inspiration vs end expiration during breath 

hold. The blue bars in the bottom figure are lower than those 

in the top figure suggesting that SCG had smaller variability 

during breath hold.  

Figure 7. Inter-group DTW distance for end inspiration and 

expiration breath hold and (a) Cluster 1 and (b) Cluster 2. 

Cluster 1 and 2 were extracted from the normal breathing 

data using machine learning. This data suggests that Cluster 

2 tended to be more similar to end expiration, while no clear 

trend was seen for Cluster 1.  



to produce for extended period of time. However, several 

short recordings of breath hold may be possible. Those 

can be patched to extract sufficient number of SCG 

events to perform signal analysis. 

V. SUMMARY 

This study investigated SCG signal variability during 

normal breathing and breath hold. The SCG acquired 

during normal breathing were optimally clustered using 

unsupervised machine learning to reduce SCG 

morphological variability. The clustering results 

suggested that SCG waveforms were optimally separated 

into two groups that showed consistent relations with 

respiratory phases.  The two breath hold states (end 

inspiration and expiration), which correspond to different 

physiological conditions (e.g., relative heart location 

shape and position, intra thoracic pressure) were found to 

have different SCG wave morphologies. 

Intra-group SCG variability were compared for the un-

clustered, clustered, and breath hold cases. Results 

showed that the variability was reduced by 19% after 

clustering and 42% during breath hold. Further studies in 

a larger number of subjects will help elucidate these 

differences in healthy subjects, and in those with cardiac 

pathologies. 
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