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Abstract—In this work, we introduce an atlas-based segmenta-
tion method for lower leg tissues at 4%, 38%, and 66% tibial
length. Our goal is to model the shape of the lower leg tissue
types and to identify hard and soft tissues in an automated
way. In our methodology, we implemented B-spline based
free form deformation (FFD), and symmetric diffeomorphic
demons (SDD) deformable models for nonlinear registration,
and compared their performances for atlas-based segmenta-
tion accuracy on our pQCT data. Overall, we concluded that
atlas-based segmentation is a promising technique, especially
in the presence of noise and other types of image degradation.
We also observed that the diffeomorphic demons algorithm
may produce more accurate deformation fields than FFD.
On the other hand, FFD produced smoother deformations
than SDD. Quantitative analysis using the Dice similarity
coefficient (DSC), showed that FFD was slightly better than
SDD in identification of the trabecular bone tissue in 4% tibia.
At 38% tibial length, SDD produced consistently higher DSC
values than FFD, while at 66% tibia, FFD produced slightly
higher segmentation accuracy.

I. INTRODUCTION

In the biomedical image analysis domain, segmentation
refers to the process of delineation and identification of
objects or tissues in images. While there are many im-
age segmentation methods, yet it is a problem-specific
or a domain-specific task, and it depends on the image
data, the objects imaged, and the type of desired output
information. Radiological imaging techniques are subject
to imaging artifacts such as noise, beam hardening, ring
artifacts, partial voluming, and noise. Traditional methods
for delineating biomedical images involve semi-manual
supervised operations, which are slow, subject to error, and
their accuracy depends on the performance of the expert
[1]. Atlas-based segmentation offers an automated, fast,
robust to noise and accurate solution to diverse biomedical
image segmentation problems.

An atlas is an image that incorporates the locations and
shapes of anatomical structures, and spatial relationships
between them [2]. It provides a complete description
of neighborhood relationships between several different
(anatomical) structures. The literature in this field includes
numerous methods and significant applications such as
tissue identification, computational anatomy, and surgical
planning [1], [3], [2], [4], [5], [6].

In this paper, we introduce our atlas-based tissue seg-
mentation method applied to peripheral Quantitative Com-
puted Tomography (pQCT) scans of the lower leg at
anatomical sites corresponding to 4%, 38% and 66% of
the tibial length, (see Figure 1 for an example). Our goal

Figure 1. Statistical atlases for 4%, 38% and 66% tibial length in the
lower leg (top, left to right), and their corresponding labels (bottom,
left to right). TB-Trabecular Bone, CB-Cortical Bone, M-Muscles and
SAT-Subcutaneous Adipose Tissue. We generated the atlases using the
procedure in Section II-B. We delineated the tissue labels using a semi-
manual workflow.

is to model the shape of the hard and soft tissue regions
and perform fully automated tissue delineation. The tissue
types that we wish to quantify are summarized in Table I.

Table I
TISSUES TO QUANTIFY IN THE DIFFERENT ANATOMICAL SITES.

Anatomical Site Tissues to quantify
4% Trabecular Bone

38% Cortical Bone, Trabecular Bone
66% Cortical Bone, Trabecular Bone, SAT, Muscle

The method includes two major stages: atlas generation
and segmentation. In each of these stages, we employed
both linear and nonlinear registration techniques. The linear
registration stage, which we modeled by affine transfor-
mation, is used to address global misalignments between
images. In the nonlinear registration stage, we employed
two deformable models, namely, free-form deformable reg-
istration using B-splines [7], and symmetric diffeomorphic
demons [8].

We validated and compared the performance of the de-
formable registration methods. For each of the deformable
models, we performed experiments using the calculated
statistical atlas [3]. Our results showed that our atlas-based
system produced good rates of segmentation accuracy even
for data with visible image quality degradation. In addition,
symmetric diffeomorphic demons may produce slightly
more accurate delineations than B-spline-based FFD.



The remaining sections of the paper are structured as
follows: in Section II, we first describe the linear and
deformable registration techniques that we employed. Next,
we explain the statistical-average atlas generation and
our atlas-based segmentation technique. In Section III we
describe our experiments and discuss the results. Lastly,
Section IV concludes this work.

II. ATLAS-BASED TISSUE IDENTIFICATION

Two fundamental stages in an atlas-based segmentation
framework are i) atlas generation and ii) segmentation, or
label propagation. Image registration is a key process in
both stages.

A. Registration

Let I and R be the input and reference images, with
their respective spatial domains ΩI and ΩR. Sotiras et al.
[6], defined the goal of image registration in biomedical
imaging domain in terms of finding an optimal transfor-
mation τ : ΩI → ΩR that maps x ∈ ΩI to τ(x) ∈ ΩR,
and optimizes an energy of the form

E(τ) = λss(R, I ◦ τ) + λrr(τ). (1)

In equation (1), τ is the deformation field and is defined
in [6] as a sum of the displacement field u and the
coordinate vector x

τ(x) = u(x) + x. (2)

The deformation field τ warps coordinates of the ref-
erence space to the input space. The function s(·, ·) is
the similarity measure. It is used to quantify the level
of alignment between R and I, and also measures the
correctness of the mapping τ, between I and R. The
regularization term r encodes the desired properties of τ.
It also serves as the smoothing term or filter for τ. The
parameters, λs and λr denote the weights of the residual
and regularization terms respectively.

In our atlas-based segmentation system, we employ both
linear and nonlinear registration models, to account for
global as well as local misalignments.

Linear Registration

We implement a linear model τL, to capture the global
motion of the lower leg. We model the linear registration
using affine transforms. We utilize the Mattes’ Mutual
Information similarity metric and a regular step gradient
descent optimizer.

Nonlinear Registration

The nonlinear (deformable model, τ := τNL) registra-
tion is used to address inter-individual variability in shapes
of anatomical structures.

We employ multi-grid FFD and Symmetric Diffeomor-
phic demons on log-domain (SDD) techniques.

1) Multi-Grid FFD: Rueckert et. al [7] modeled non-
linear deformations using B-spline based free-form defor-
mations. Because our method is applied to 2D images, we
present the 2D version of FFD. Given the spatial domain,
Ω = {x = (x, y)|0 ≤ x < X, 0 ≤ y < Y } of an image,
let Φ denote an nx × ny mesh of control points φi,j with
uniform spacing δ. Then, the FFD (displacement field τ )
[7] can be written as the 2-D tensor product of 1-D cubic
FFD

τ(x) =

3∑
l=0

3∑
m=0

Bl(u)Bm(v)φi+l,j+m (3)

where i = bx/nxc − 1, j = by/nyc − 1, u = x/nx −
bx/nxc, v = y/ny − by/nyc, and Bl represents the lth
basis function of the B-spline.

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6.

To ensure that τ produces a smooth transformation, we
used the bending energy of a thin-plate of metal r as the
regularization term given by

r(τ) =
1
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where |Ω| is the area of the image domain.
The normalized mutual information, given in Equation

(5)

s(A,B) =
H(A) +H(B)

H(A,B)
(5)

served as the similarity measure to avoid any dependence
on the degree of image overlap. More information on the
B-spline based FFD and the optimization stages can be
found in [7]. An advantage of B-spline FFD is that it can
produce smooth deformations with a moderate number of
parameters, nevertheless, it may not preserve the topology
very well.

2) Diffeomorphic Demons: In the method described in
[9], the demons algorithm was employed for minimiza-
tion of the energy functional given in Equation (1), by
introducing a variable c [10] to approximate the error in
the correspondence between image pixels. Thus the global
energy in Equation (1) is modified as

E(c, τ) =
1

λ2
s

s(R, I, c) +
1

λ2
h

d(τ, c)2 +
1

λ2
r(τ) (6)

where the similarity criterion s(·, ·, ·), is given by

s(R, I, c) =
1

2
‖R−I◦c‖2 =

1

2|Ωp|
∑
x∈Ωx

|R(x)−I(c(x))|2,

(7)
and λ accounts for spatial uncertainty on the correspon-
dences. Also, d(τ, c) = ‖c − τ‖ and r(τ) = ‖∇τ‖2.



Fluid-like constraints may be applied by modifying the
regularization term [10]. Ωp is the region of the intersection
between R and I ◦ τ.

The minimization process was based on additive it-
erations of the form τ ← τ + u using classical de-
scent methods. By introducing the auxiliary variable c,
the optimization scheme alternates over c and τ thereby
simplifying and increasing the efficiency of the complex
minimization steps [9].

Application of classical Newton’s method on the energy
function of (6) yields the following update equation

u(x) = −R(x)− I ◦ τ(x)

‖Jp‖2 +
σ2
i (x)

σ2
x

Jx> (8)

where λh controls the maximum step length: ‖u(x)‖ ≤
λh/2. To make the transformation diffeomorphic, τ is re-
placed with the composition of τ and exponential exp(u),
i.e., τ ← τ ◦exp(u), thus exploring the Lie group structure
on diffeomorphisms.

A log-domain representation of the complete spatial
transformation is achieved by defining τ as the exponential
function of the smooth vector field, τ := exp(v) [8]. To
accomplish this, the authors of [8] used Baker-Campbell-
Hausdorff (BCH) approximations to seek a smooth velocity
field Z(v, εu), such that exp(Z(v, εu) ≈ exp(v)◦exp(εu),
where ε is a weight parameter.

Log-Domain Diffeomorphic Demons: Using the BCH
approximations, the field update τ ← τ ◦ exp(u) used
in the diffeomorphic demons could be converted into a
log-domain update v ← ZX(v,u), provided that the
current transformation τ can be expressed as an exponential
τ = exp(v). Gaussian smoothing is performed directly
in the log domain in order to keep the field consistent
with the log-domain representation, while maintaining the
simplicity of the demons algorithm. The log-domain frame-
work can simply be linked to (1) by defining d(c, τ) =
‖ log(τ−1 ◦ c‖ and r(τ) = ‖∇ log(τ)‖2.

Symmetric Extension: In the log-domain, the inverse
spatial transform, τ−1 of τ = exp(v) that is τ−1 :=
exp(−v), can be obtained efficiently by backward com-
putation. Therefore, a symmetric transformation can be
derived from a nonsymmetric one by making the global
energy symmetric, i.e.,

τopt = arg min
τ

(
Esym := E(R, I ◦ τ) + E

(
I,R ◦ τ−1

))
(9)

The authors in [8], developed a technique to minimize a
symmetric global energy that is formulated as a constrained
equation using two diffeomorphisms

[τopt, τ
−1
opt] = arg min

[τ,τ−1]
Esym

An unconstrained optimization step was used on the pair
[τ, ρ] and then the new transformations are projected onto
the space of symmetric transformations {[τ, ρ]|ρ = τ−1}.

Figure 2. Statistical average atlas generation algorithm.

B. Average Atlas Generation

We generate the statistical atlases by iteratively calcu-
lating group averages over registered images. The average
atlas gives a statistical description of all subjects by means
of the group average and deviation. In this approach, one
subject is chosen from a data set, as the reference. Then, we
linearly register all subjects to the selected reference and
compute the group average. In the second iteration i = 2,
the group average image from linear registration is chosen
as reference, then all subjects are registered to the new
reference, nonlinearly and the average is computed. For
iterations i ≥ 3, the nonlinearly registered average image
from the preceding iteration is set as the reference, then
all subjects are again nonlinearly registered to the chosen
reference, and the average is computed average at each
iteration. The process is continued until the final iteration
i = K. In the generation of statistical atlases, we used
K = 10 iterations. Figure 2 outlines the statistical atlas
calculation algorithm.

A sequence of transformations τ
(n)
i , where n =

0, 1, 2, . . . , N is the nth image and i = 0, 1, . . . ,K is the
ith iteration, is generated with the property that for each
iteration i, the transformation τ

(n+1)
i and the preceding

transformation τ
(n)
i differ only by a small amount of

deformation [3]. After generating the statistical atlas image,
we manually labeled the tissues. The first row in Figures
4, 5 and 6 displays the atlas image and atlas label map for
4%, 38% and 66% of the tibia length, respectively.

C. Atlas-based Segmentation

We employ atlas-based segmentation to segment all
subjects using the atlas image and the corresponding label
image (segmented atlas). The process can be divided into
two parts: 1) establishment of spatial correspondences
between the atlas and the subject, 2) propagation of labels
[1]. The process is described in Figure 3.

1) Spatial Correspondence: In the registration process,
the atlas A is the input image, while the individual subjects
are the reference images. First, we model a rigid transfor-
mation, τL by linearly registering the atlas intensity image
to the subject. Then we apply τL to the coordinate space
of atlas intensity image A to obtain linearly registered atlas
image τL(A). Secondly, we estimate the deformable model
τNL, by a nonlinear registration of τL(A) to the subject
image. Then the nonlinear transformation τNL is used to
warp the coordinate space of the linearly registered atlas
pixel image to the subject space, to obtain τNL ◦ τL(A) =
τNL(τL(A)). If the above process is successful, we observe



Figure 3. Atlas-based segmentation.

that the deformed atlas image is similar in structure and
spatial location to the original subject image. We show
examples of τL(A) and τNL(τL(A)) for 4%, 38% and 66%
tibia sites in Figures 4, 5 and 6 respectively.

2) Label Propagation: After we have established the
spatial correspondence between SA and A using the linear
and nonlinear deformations τL and τNL, the next step is
to assign labels from the atlas to the subject space. We
apply the estimated deformation τNL◦τL to the segmented
(labeled) atlas to propagate labels to the subject domain.
The segmentation results are defined as τNL(τL(SA)) (see
results in Figures 4, 5 and 6, corresponding to tissue
identification of 4%, 38% and 66% of tibia).

III. RESULTS AND DISCUSSION

In this section, we discuss our datasets, the purpose of
our experiments, and the results we obtained.

A. Dataset

Our dataset consists of randomly selected pQCT scans
from three different anatomical sites of the lower leg,
namely 4%, 38%, and 66% tibia. The data were obtained
from the InCHIANTI study that is a population-based
cohort study that was performed in two Italian towns in
the Chianti region (Greve and Bagno). The test dataset is a
random sample of participants aged 65 years or older and
a group of men and women randomly selected for each
decade between 20 and 70 years of age that was provided
by Lauretani et al in [11]. The InChianti study excluded
participants who were receiving medication, or had con-
ditions affecting the bone metabolism. The experimental
procedures involving human subjects were approved by the
Institutional Review Board of the institution that provided
the data. The clinical trial design and data collection
methods of InChianti were described in more detail in [12]
and [13].

B. Experiments

We tested our atlas-based segmentation with 30 different
subjects at 4% tibia, 26 subjects at 38% tibia and 20
subjects at 66% tibia. Reference label data, consisting
of manually segmented images were also provided for
all images in the three anatomical sites, to be used for
validation of segmentation accuracy.

Our experiments were focused on shape modeling and
identification of lower leg (tibia) tissues in pQCT using
atlas-based segmentation. A list of the three different
anatomical sites and the corresponding tissues to identify is

given in Table I. We divided our experiments into two parts,
1) using free-form deformations, and 2) using diffeomor-
phic demons. The segmentation accuracy for each tissue
in each of the anatomical sites was validated using the
Dice similarity coefficient (DSC) given by DSC(R,S) =
2|R∩S|
|R|+|S| , where R stands for a tissue label in the reference
image and S represents the corresponding tissue label in
the segmented image.

C. Qualitative Results

Typical examples of the result of atlas-based segmen-
tation, and identification of tissues in the 4%, 38% and
66% anatomical sites of the lower leg, using FFD and
diffeomorphic demons, are shown in Figures 4, 5 and 6.
In these examples, it appears that the FFD method yielded
more accurate segmentation than SDD for 4% of the tibial
length, but at 38% and 66% tibial length, we observe
that the results of SDD seem to produce more accurate
segmentation. In the 38% and 66% sites, we observe that
the tissues (cortical and trabecular bones) in the results of
the FFD method still maintained the shape of the atlas to
some extent, whereas the SDD results tend more to assume
the shape of tissues in the subject image. Also in the 66%
site results, the space between the SAT and muscle tissues
tends to be narrower for the SDD algorithm, as it appears in
the input image, than it does appear in the result obtained
with FFD.

Although visual inspection provides insight into the
performance of our methodology, yet we need quantitative
evaluation to make objective conclusions. The quantitative
analysis of our method follows in the next subsection.

Input Atlas Atlas-Label

τL(A) τNL ◦ τL(A) τNL ◦ τL(SA)

FF
D

SD
D

Figure 4. Example of individual stages of atlas-based segmentation of
4% tibia site using FFD (middle row) and SDD (bottom row).

D. Quantitative Results

We segmented all subjects in each dataset using FFD
and SDD and calculated the DSC of the individual tissue
types for each method.
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τL(A) τNL ◦ τL(A) τNL ◦ τL(SA)
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Figure 5. Example of individual stages of atlas-based segmentation of
38% tibia site using FFD (middle row) and SDD (bottom row).

Input Atlas Atlas-Label

τL(A) τNL ◦ τL(A) τNL ◦ τL(SA)

FF
D
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D

Figure 6. Example of individual stages of atlas-based segmentation of
66% tibia site using FFD (middle row) and SDD (bottom row).

1) 4% tibia site: Here we are interested in identifying
the trabecular bone. We segmented all 30 scans using FFD
and SDD, and calculated DSC the trabecular bone (TB)
tissue for each method. We used box plots to represent
the range of DSC values of the trabecular bones of all
30 subjects for each method in Figure 7. We display the
DSC for FFD and SDD on the left and on the right side
respectively. This plot shows that FFD produced better
segmentation accuracy than the SDD, as the lowest value
is about 90%. We also calculated the average DSC over
all subjects that showed that the DSC of FFD (∼95.6%) is
greater than SDD (∼ 93.7%).

2) 38% tibia site: We performed experiments with atlas-
based segmentation on 26 scans of the 38% tibia site using
FFD and SDD. The tissues of interest are the cortical

Figure 7. Box plots of DSC values of 4% segmentation results for all
subjects, each tissue and each method. The red horizontal line within the
box is the median over all subjects, the vertical lines show the range of
values, the box shows the 25th and the 75th percentiles of the respective
distributions.

bone (CB) and the trabecular bone (TB). We calculated the
DSC for each tissue between segmentation results and the
reference label maps, and compared the performance of the
two deformable models. The DSCs for all subjects, each
tissue, and each method are represented by the box plot in
Figure 8. We observe that for both tissues, the DSC values
for SDD are higher than that of FFD. The range of values
for SDD is more compact and on the upper values than
FFD which shows a wider spread and has values that are
less than 65%. The average DSC values are summarized in
Table II. We observe that the diffeomorphic demons (SDD)
algorithm performed better than the free-form deformation
(FFD) with B-splines.

Figure 8. Box plots of DSC values of 38% segmentation results for
segmented subjects, each tissue and each method. [See Figure 7 for details
about box plots].

Table II
DSC VALUES (µ± σ) OF TISSUE IDENTIFICATION IN 38% TIBIA

Method Cortical Bone Trabecular Bone
FFD 84.8± 7.6 79.7± 9.7
SDD 93.9± 2.2 93.6± 2.1

3) 66% tibia site: 20 scans at the 66% tibia site were
segmented in this experiment. The tissues of interest are
the subcutaneous fat (SAT), muscle (M), cortical bone
(CB), and trabecular bone (TB). The box plots in Figure
9, illustrate the performance of each method in the identi-
fication of the aforementioned tissues over all the subjects.
We observe that, apart from the SAT, the maximum DSC
value obtained using SDD is always greater than that of
FFD, in the remaining three tissues. Also, the minimum



values for SDD are always greater than FFD. Although
the median mark for FFD is greater in SAT, CB, and TB
than SDD, yet the range of values for the individual tissues
is more compact for SDD than FFD. The DSC values are
summarized in Table III. The results show that SDD and
FFD produce close expected values for DSC.

Figure 9. Box plots of DSC values of 66% segmentation results for
segmented subjects, each tissue and each method. [See Figure 7 for details
about box plots].

Table III
DSC VALUES (µ± σ) OF TISSUE IDENTIFICATION IN 66% TIBIA

Method SAT Muscle Cortical
Bone

Trabecular
Bone

FFD 77.7±13.7 93.8± 2.4 76.1±11.8 88.9± 5.6
SDD 75.2±13.1 94.3± 3.0 75.3±10.7 88.1± 5.2

IV. CONCLUSION

In this work, we employed atlas-based segmentation
for shape modeling and identification of tissue objects in
pQCT. We considered three datasets corresponding to the
three tibia sites of the lower leg, namely at 4%, 38%
and 66% of the tibial length. We generated a statistical
atlas by an iterative shape averaging algorithm, for each
anatomical site, to use for segmentation of the subjects in
each dataset. In the registration part of our methodology,
we compared the performance of two nonlinear deformable
models, namely: free-form deformations (FFD) using B-
splines and diffeomorphic demons (SDD). We evaluated
the accuracy of tissue identification at three anatomical
sites, using the Dice similarity coefficient (DSC). Our
results showed that the diffeomorphic demons approach has
slightly better potential to identify the shape of tissues in
pQCT data than FFD. Furthermore, both methods showed
robustness to image degradation and noise. Although SDD
deformations may be slightly more accurate, they may be
affected by noise, because SDD is a variational intensity-
based registration technique. On the other hand, the FFD
deformations are smooth i.e., robust to noise, but may yield
slightly lower delineation accuracy.
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