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Abstract—One of the main motivations for classifying knee
kinematic signals, namely the variation during a locomotion
gait cycle of the angles the knee makes with respect to
the three­dimensional (3D) planes of flexion/extension, ab­
duction/adduction, and internal/external rotation, is to assist
diagnosis of knee pathologies. These signals are informative
but high dimensional, and highly variable, which has posed
difficulties that have been addressed by machine learning
algorithms. The purpose of this study is to investigate classi­
fication of knee kinematic signals through the entire gait using
deep neural networks. The signals are first pre­processed to
identify representative patterns, which are then used for deep
learning of discriminative classifiers. This paper describes an
efficient means of distinguishing between knee osteoarthrisis
patients and asymptomatic participants, and our methods and
experiments which validate it.

I. INTRODUCTION
The knee is a complex joint that requires perfectly cou­

pled three­dimensional (3D) motions for proper function.
As a result, reliable diagnosis of knee­joint pathologies is
a difficult task, requiring in many cases a combination of
imaging­based examinations, such as magnetic resonance
imaging and computed tomography, and clinical tests. Such
methods do not provide direct objective information on
the functional aspects of the knee­joint, and are not typ­
ically performed during knee movement. For this reason,
biomechanical gait analysis has become essential in knee­
joint pathology diagnosis: it provides quantitative infor­
mation about the structure and motion of the knee­joint
to complement the common evaluation methods for more
accurate diagnosis [1]. 3D knee kinematic signals, mea­
suring knee flexion/extension, abduction/adduction, and
internal/external rotation, are now commonly used in gait
analysis to assist knee­joint pathology diagnosis. Knee
kinematic gait signals can be acquired in a normal clinical
setting, using a commercially available treadmill and a
simple noninvasive knee attachment system [2]. Recorded
as functions of time, they can be viewed as time series.
High­dimensionality, the significant within­pathology class
variability, and the low between class separation, usually
make kinematic signal interpretation quite challenging [3],
[4]. Several studies have used knee kinematic signals to
distinguish between knee osteoarthritis (OA) and asymp­
tomatic (AS) subjects, and to further classify OA popula­

tions according to severity levels. A common approach to
knee kinematic signal classification has been to extract and
select knee kinematic features, such as flexion angle peak
values from the kinematic time series representations, and
then apply simple statistical methods such as Student t­test
to know whether there were statistically significant dif­
ferences between normal and pathological groups [5], [6].
Recently, general methods of feature extraction and ma­
chine learning have been applied to knee kinematic signals
classification. However, general feature extraction faces the
high dimensionality and variability that characterize knee
kinematic data signals. Recent investigations have obtained
good results but have been tested on small datasets, which
limits the generality of their conclusions. For instance, 40
knee OA subjects and 40 healthy subjects participated in a
study in which 3D knee kinematics data (flexion/extension,
abduction/adduction and internal/external rotation) were
recorded [7]. The authors could only examine a set of
70 kinematic features to determine the most discriminant
features to use. Regression tree representation gave 85%
accuracy in discriminating knee OA subjects from healthy
subjects. In this study, we use deep neural networks [8] for
the automatic classification of asymptomatic and knee OA
kinematic data using the entire signal as the initial features
on a relatively large dataset compared to previous studies
of biomechanical data classification [9]. The motivation for
investigating deep neural networks in knee kinematic data
classification is their success in classification of time series
at large on UCR and/or MTS archive datasets [10], [11],
[12], [13] from different domains such as human activity
recognition and sleep stage identification. The advantage of
deep neural networks is their ability for automatic feature
extraction from raw, complex, and high­dimensional data.
In this work, pre­processed knee kinematic data signals
are the inputs to deep neural networks to learn kinematic
features capable of discriminating knee OA patients from
asymptomatic participants. Our investigation provides a
comparison of the effectiveness of various deep neural net­
works in knee kinematic time series classification problem.
To the best of our knowledge, this is the first study on
classifying raw knee kinematic time series using end­to­
end discriminative deep learning classifiers via analyzing



the entire kinematic signal.

II. METHODS
A. Ethics statement
Ethical approval for this study was given by the Cen­
tre de Recherche du Centre Hospitalier de l’Université
de Montréal (CRCHUM) and the École de Technolo­
gie Supérieure (ÉTS), Hôpital Maisonneuve­Rosemont
(HMR), local ethics committee. All subjects provided an
informed consent before participation.

B. Data collection: Subjects and procedures
We used 3D knee kinematics of 226 subjects collected in

different centers. The first group included 81 asymptomatic
(AS) subjects (37 males and 44 females). The AS subjects
ranged in age from 20 to 58, had a mean age of 32.7± 10
years, and a mean body mass index (BMI) 24.5 ± 4.1
kg/m2 (normal weight). The second group included 145
knee osteoarthritis (OA) patients (59 males and 86 fe­
males). The OA subjects ranged in age from 40 to 80, had
a mean age of 62.8 ± 10.1 years, and a mean body mass
index (BMI) 31.7±7.4 kg/m2 (obese). 3D knee kinematics
are acquired with the KneeKGTM system (Emovi Inc.
Canada) during gait on a treadmill (45 s duration). KneeKG
is a non­invasive system consisting of a harness that is
placed on the participant’s knee, an infrared camera, and a
computer equipped with the KneeKGTM software [14].
The accuracy [15], reproducibility [16], repeatability [17],
and reliability [18] of the system have been studied. In
particular, accuracy of the KneeKG system was assessed in
studies which evaluated the mean repeatability of measures
ranging from 0.4◦ to o.8◦ for knee angles. Each participant
underwent a series of successive gait trials during a given
session. In each trial, the motion trajectories in the sagittal,
frontal, and transverse planes of the knee reference system
are recorded. These data are filtered using a non­parametric
time series analysis called Singular Spectrum Analysis
(SSA) [19], and transformed into 3D knee­joint angles
[17]. A database is created for each participant, containing
the 3D knee kinematics in the sagittal, frontal, and trans­
verse planes, i.e, abduction­adduction, flexion­extension,
and internal­external rotation, respectively, representing the
angle time series, i.e., the time­varying angle values.

C. Data analysis
Knee kinematics classification systems typically have

three parts: data­preprocessing, feature extraction and se­
lection, and classification. In this work, pre­processed knee
kinematic data curves (entire gait cycle) are fed directly
into deep neural networks as inputs.
1) Kinematic data pre­processing: Once data collection

is complete, the raw kinematic data are pre­processed
in order to find robust representative patterns for each
participant, via steps of missing data interpolation, gait
events detection, normalization, outlier detection, cycles’
selection, and averaging. The data curve is interpolated by
cubic spline interpolation to fill gaps that may be present
between data point measurements. The curves of each

participant are then divided into distinct gait cycles. Our
approach centers on the location of local maxima values
in the sagittal plane signal, since the data from the sagittal
plane are more reproducible than those from the other two
planes [20]. Heel strike (HS) points are the first local
minima after the local maxima and are specified as the
start of each gait cycle. This is followed by normalization
to 100% of the gait cycle, giving 100 measurement points
for each participant in each plane. Thus, for each plane, the
superposed normalized cycles constitute the observations to
describe the representative patterns characterizing the given
participant. These observations correspond to a family of
curves due to within­subject variability from stride­to­
stride, and are possibly affected by outliers. Representative
gait patterns of a given subject are then determined by
within­subject evaluation for outliers removal and reliable
curves selection. The within­subject variability is estimated
using Boxplot, which allows the efficient elimination of
outlier curves, which occur outside upper and lower limits.
This is followed by cross­validation, which consists of
keeping only about 15 of the most repeatable curves, i.e.,
those having the lowest Root Mean Square Error (RMSE).
Finally, the gait of each subject is characterized by a single
curve, which is the mean of these [21]. Figure 1 shows the
time­series kinematic signals in the sagittal plane, frontal
plane, and transverse plane for the whole dataset.

2) Deep neural networks for knee kinematic time series
classification task: The purpose is to classify knee kine­
matic time series using deep neural networks. We tested
various end­to­end discriminative deep learning models
designed specifically for time series classification, in order
to find which model works best for knee kinematic time
series classification. In contrast to feature engineering,
end­to­end discriminative deep learning directly learns the
mapping between the raw input of a time series and outputs
a class probability distribution. This is important in our
study because it avoids the bias due to handcrafted features.
A deep neural network has an input layer, an output
layer, and more than two hidden layers. In the present
case, deep neural networks are applied for each plane
separately, namely to the flexion/extension angle, with
respect to the sagittal plane, the abduction/adduction angle,
with respect to the frontal plane, and the internal/external
angle, with respect to the transverse plane, to determine the
contribution of each plane in discriminating patients with
OA and AS participants. For each plane, the input layer
inputs a labeled knee kinematic time series dataset D =
[(Y1, X1), (Y2, X2), ..., (YN , XN )]T , N denotes the dataset
size, Xi is a univariate time series and Yi its corresponding
two­class label (AS and OA). Target values are 0 for the
AS class and 1 for the OA class. Xi = [xi1, xi2, ..., xiT ],
T = 100 denotes the time series length (corresponding
to the gait cycle percentage). The elements xij of the time
series are real numbers corresponding to the knee kinematic
angles. The task of kinematic time series classification
consists therefore of training a classifier on a dataset D
in order to map the input set Xi into its class label Yi.
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Figure 1. Plots of knee kinematic time series for all subjects in all three planes.

Hidden layers of a deep network are designed to learn
hierarchical feature representations of the data. During
training, a set of hyper­parameters is optimized, and the
weights are initialized randomly [22]. Using gradient de­
scent [22], [23], the weights are updated using the back
propagation algorithm, in a way that minimizes the cost
function on the training set. The choice of the model, the
architecture, and the cost function are crucial for obtaining
a network that generalizes well, and are generally problem
and data dependent. We trained seven deep learning mod­
els, which have convolutional neural network (CNN)­based
architecture [24], and designed specifically for time series
classification. The different hyper­parameters of CNN are
the optimization algorithm (momentum), the number of
epochs, the number of layers, the number of filters, the
filter size, the activation function, the cost function, the
batch size, and the weight initialization. In the remainder
of this paper, a convolutional block is denoted Blockk
with the number of filters ck, and the filter size zk. Here
following are the deep learning models that we investigated
for their ability to discriminate between knee kinematic
signals of patients with OA and AS participants.
Time convolutional neural network (time­CNN) [25]:
Figure 2a summarizes the architecture of the time­CNN
model. There are 3 layers in this network including 2
convolution blocks, and 1 fully­connected layer, with a Sig­
moid activation function. The convolutional block consists
of a convolution layer, a sigmoid layer, and a max pooling
layer with pooling size 3. The number of filters ci={6, 7},
and the filter size zi={12, 7}.
Multiscale convolutional neural network (MCNN) [26]:
Figure 2b summarizes the architecture of the MCNN
model. There are 4 layers in this network including 2
convolution blocks, 1 fully­connected layer with 256 neu­
rons and Sigmoid activation function, and a softmax layer.
The convolutional block consists of a convolution layer,
a sigmoid layer, and a max pooling layer. The search
space for the pooling factor is {2, 3, 5}, which denotes the
number of outputs of max pooling. The number of filters
ci={256, 256}, and the filter size zi={{5, 10, 20}, {5, 10,
20}}. The MCNN comprises a multi­scale transformation
stage that apply various transformations on the input time
series, including identity mapping, down­sampling, and

smoothing, each of which is an input to an independent
CNN. A deep concatenation technique have been used after
the first convolutional block to concatenate all the resulting
feature maps at each scale. Window slicing have been used
to increasing the size of the training size. The length of
slices is set to be 0.9T.
Multi Channel Deep Convolutional Neural Network
(MCDCNN) [27]: Figure 2c summarizes the architecture
of the MCDCNN model. There are 4 layers in this network
including 2 convolution blocks, 1 fully­connected layer
with 732 neurons and a ReLU activation function, and
finally a softmax layer. The convolutional block consists of
a convolution layer, a ReLU layer, and a max pooling layer
with pooling size 2. The number of filters ci={8, 8}, and
the filter size zi={5, 5}. The MCDCNN inputs individual
univariate time series (channels), and then concatenates the
resulting feature maps of the second convolutional block.
Time Le­Net (t­LeNet) [28]: Figure 2d summarizes the
architecture of the t­LeNet model. There are 4 layers in this
network including 2 convolution blocks, 1 fully­connected
layer with 500 neurons and a ReLU activation function, and
finally a softmax layer. The convolutional block consists
of a convolution layer, a ReLU layer, and a max pooling
layer with pooling size 2 and 4 on the first and second
block respectively. The number of filters ci={5, 20}, and
the filter size zi={5, 5}. Two data augmentation techniques
have been proposed namely window slicing and window
warping.
Fully Convolutional Neural Network (FCN) [12]: Figure
2e summarizes the architecture of the FCN model. There
are 5 layers in this network including 3 convolution blocks,
1 global average pooling layer, and finally a softmax layer.
The convolutional block consists of a convolution layer, a
batch normalization layer, and a ReLU activation layer.
The number of filters ci={128, 256, 128}, and the filter
size zi={8, 5, 3}.
Encoder [29]: Figure 2f summarizes the architecture of the
encoder model. There are 5 layers in this network including
3 convolution blocks, 1 global average polling layer, and
finally a softmax layer. The convolutional block consists
of a convolution layer, an instance normalization layer, a
PReLU activation layer, a max pooling layer with pooling
size 2, and a dropout of 0.2. The number of filters ci={128,



256, 512}, and the filter size zi={5, 11, 21}.
Residual Network (ResNet) [12]: Figure 2g summarizes
the architecture of the ResNet model. There are 11 layers
in this network including 9 convolution blocks, 1 global
average polling layer, and finally a softmax layer. The
convolutional block consists of a convolution layer, a batch
normalization layer, and a ReLU activation layer. The
number of filters ci={64, 64, 64, 128, 128, 128, 128, 128,
128}, and the filter size zi={8, 5, 3, 8, 5, 3, 8, 5, 3}.
All deep learning models used in our study have an
output layer with 2 neurons, corresponding to the binary
classification in this application.
We should note that all deep learning models were ini­
tialized randomly using the Glorot’s uniform initialization
method [30].
Table I summarizes the optimized hyper­parameters con­
figuration for each model.

III. RESULTS AND DISCUSSION
We trained the deep learning models presented above

with 10 different runs each. Following Fawaz et al. [13]
and for the sake of fair comparison, each run uses the same
train/test split of the knee kinamtic time series dataset in
the same way as the UCR archive, but with a different
random weight initialization, which enables us to take the
mean accuracy over the 10 runs. That is, the training and
testing set have approximately the same amount of data.
Metrics of accuracy, precision and recall were used over
the test set for model selection, i.e. the ability of the model
to discriminate between AS and OA participants. These
metrics are defined in Equation 1­3. In these equations, TP
stands for true positives, i.e., the number of OA participants
correctly classified as OA participants. TN stands for true
negatives, i.e., the number of AS participants correctly
classified as AS participants. FP stands for false positives,
i.e., the number of AS participants misclassified as OA
participants, and FN stands for false negatives, i.e., the
number of OA participants misclassified as AS participants.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

In this experiment, the compared deep learning models
are available in an open source deep learning framework
which is implemented using the open source deep learn­
ing library Keras with the Tensorflow back­end. Table
II summarizes the accuracy, precision, recall and training
time (s) of the compared deep learning models: time­CNN,
MCNN, MCDCNN, t­leNet, FCN, encoder, and ResNet,
applied for each plane separately, namely the frontal (Ab­
duction/adduction), sagittal (Internal/external rotation), and
transverse (flexion/extension) planes.
The results show that ResNet reached competitive accuracy
compared to the other deep learning approaches on the

knee kinematic time series dataset. This finding concur
with the deep learning for time series review where deeper
neural networks performed better in related fields [13]. The
approaches that involve pre­processing techniques such
as data segmentation (MCNN, MCDCNN and t­LeNet)
achieved the worst accuracies. In our problem settings,
the gait cycle event­based segmentation techniques would
be more adequate than the sliding window segmentation
technique. The former would split the knee kinematic
signal based on the gait cycle events (Heel Strike, toe­off,
etc), whereas the latter split the signal into windows of a
fixed size. We have noticed that the Adam optimization is
also adopted for time series classification as for computer
vision. We should note that the ResNet architecture exclude
the pooling operation, which means that the length of a
time series is kept unchanged throughout the convolution,
so as to prevent overfitting. We should note also that the
batch size must be more than or equal to one and less
than or equal to the number of samples in the training
dataset. That is why we replaced the batch size value in
models where it is set greater to the training dataset at hand.
One of the non­successful strategies we tried the batch
mode (where the batch size is equal to the total dataset)
and the stochastic mode (where the batch size is equal
to one). From a biomechanical perspective, the focused
analysis using each plane data separately corroborates that
the abduction/adduction patterns are the most discrimi­
native patterns that are able to distinguish OA and AS
participants. This result is consistent with studies related to
the pathogenesis of knee OA [31], [32], [33], and machine
learning­based studies [34].

IV. CONCLUSION AND FUTURE WORK

To the best of our knowledge, the present study is the
first to investigate the application of deep learning to differ­
entiate between gait patterns of patients with osteoarthritis
and asymptomatic participants using knee kinematic data.
The data was collected from different sites to have a
larger number of OA patients and AS participants com­
pared to previous studies, which gives better generalization
capabilities. Descriptive statistics such as peak angles are
commonly extracted from the gait signal. In this study,
the entire signal is employed as the initial features. We
started from the most successful existing deep learning
models applied in various time series domains in order to
answer the question of selecting the most appropriate and
best­performing model for the knee kinematic time series
classification problem to distinguish knee OA and AS
participants. Even though we found promising results for
knee kinematics time series classification using end­to­end
deep learning models, the problem remains challenging.
An early task is to fine­tune the ResNet model with much
larger datasets, and conduct more extensive experiments on
knee kinematic time series. In a future work, we intend to
consider a multivariate knee kinematic time series dataset,
i.e, each participant in the dataset is represented by a
vector of 15 cycles and not their mean. Features could



Table I. hyperparameters’Optimization for knee kinematic time series dataset.

Model Epochs Cost function learning rate Batch size Optimizer Activation function
Time­CNN 2000 MSE 0.001 16 Adam Sigmoid
MCNN 200 Entropy 0.1 16 Adam Sigmoid

MCDCNN 120 Entropy 0.01 16 SGD ReLU
t­leNet 1000 Entropy 0.01 16 Adam ReLU
FCN 2000 Entropy 0.001 16 Adam ReLU

Encoder 100 Entropy 0.00001 12 Adam PReLU
ResNet 1500 Entropy 0.001 16 Adam ReLU

Figure 2. The architecture of the 7 tested end­to­end deep learning models.

be learned independently on each plane, then the learned
features would be concatenated and fed into the classifier.
We intend also to compare the ResNet model toward
traditional machine learning algorithms applied to a set 70
handcrafted features from the knee kinematic time series
[7]. We also intend to understand the learned features by
ResNet by applying Class Activation Map (CAM) [35],
after improving accuracy to reach 100%, and compare them
to the previously cited handcrafted features. This study
has some limitations. Indeed, OA patients were older and
heavier than those in the AS group which can effect the
gait measures and the classification results. However, in
our experiments, we used the same data set for all the
classifiers. Our aim is to compare several deep learning
models for knee joint kinematic time series data. Moreover,
to measure the performance of the deep learning models on
the test knee kinematic data, we adopted the general eval­
uation measure: accuracy, precision, and recall (similarly
to Fawaz et al. [13]). In this study, our primary concern is
accuracy. In medical tests, sensitivity and specificity are
more readily grasped by clinicians. Therefore, we shall
adopt these measures in the future work.
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