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Abstract—Our goal is to predict subjective sleep quality
(SSQ) from objective sleep data and identify the causes
and markers of the variances within “normal” sleep. Such
information would increase our understanding of the causes
of variation in SSQ and potentially improve our ability to
improve SSQ. Previous approaches rely on human annotation
of the electroencephalographic (EEG) brain signals, to deal
with the noisy, high dimensional nature of the EEGs. We
aim to use recurrent neural networks to directly analyze
and extract useful information from EEG brain signals. We
analyze population-based overnight sleep polysomnography
data obtained from 4885 community-dwelling adults. We use
convolutional and recurrent neural networks to process the
EEGs and combine them with information related to health
and lifestyle to predict subjective depth and restfulness of
sleep. We compare the coefficient of determination to the ones
obtained with regression methods and technician annotations
of the EEGs in previous studies. Predicting SSQ from our
data set of community-dwelling adults using RNNs to analyze
the whole EEG signals appear to be less accurate than
previous approaches predictions. It might be necessary to
acquire more data, possibly with new variables that might
be better correlated with SSQ. RNNs are, however, able to
extract variables correlated with SSQ from EEG signals.
Our results provide insights into how RNNs can be used to
extract information from brain signals and how methods such
as hierarchical clustering analysis can help neural networks
predict subjective variables from polysomnography data.

I. INTRODUCTION

Sleep medicine is largely focused on the treatment of
major sleep disorders such as insomnia or sleep apnea, but
relatively little work has been done on understanding and
explaining the changes in usual sleep. Many individuals
have poor sleep and, while not rising to the level of
“pathological”, this poor sleep can still have a negative
impact on overall mental and physical well-being, espe-
cially over long durations [1]. Objective sleep measures
might correlate better with particular health outcomes, but
most patients actually care about the subjective nature
of sleep – how do they feel about their sleep. If one
knew the objective elements of subjective sleep quality
(SSQ), one could design and test interventions that could
specifically target SSQ and incidentally improve objective
aspects of sleep. It is difficult to convince people to modify
their behavior based on objective measures and medical
outcomes in the distant future. Understanding variables that
are markers for, if not causally involved in, the subjective
quality of sleep is fundamental to improving sleep. Only
a few studies, such as Kaplan et al. ([2], [3]) have been
conducted on predicting SSQ. We aim to predict SSQ and

identify such markers from the brain EEG signals using
recurrent neural networks (RNNs).

Previous research has been mostly unsuccessful at de-
termining the objective correlates of SSQ. Most prior
work on predicting sleep quality from objectively recorded
sleep variables used small data sets, typically examining
healthy individuals or individuals with insomnia ([4], [5],
[6], [7], [8], [9], [10], [11]). Kaplan et al. ([2], [3]) have
previously reported SSQ on large data sets of community-
dwelling adults, where sleep was recorded for a single
night and SSQ was assessed on the subsequent morning.
The data sets, constituting data recorded from 4885 adults,
contain information about the patients health, lifestyle, the
recordings of the brain signals, and variables derived from
the signals by a technician, such as the proportion of time
asleep or the time the patient was awake at the end of
the recording. Kaplan et al. analysis rely on these derived
variables that allowed them to use supervised machine
learning algorithms, random forest and lasso regression,
to find correlates of sleep quality.

EEG signals are subject to diverse noise or artifacts
contaminating the signal obtained from the scalp during
EEG recording ([12], [13]), such as eye movements, mus-
cular contractions and variations in scalp surface caused by
sweat and hair. The temporal resolution (EEGs are sampled
at 125Hz) combined with the length of each recording
(typically around 8 hours of recordings) makes it very hard
to take into account the raw signal. RNNs have recently
emerged as an effective model in a wide variety of appli-
cations that involve sequential data. RNNs have not been
widely used in the field of EEG, but previous work ([14],
[15]) has demonstrated that neural networks constitute
an appropriate network architecture for categorizing EEG
data into stages of sleep, and that a deep neural network
sleep stager can be almost indistinguishable in performance
from a human annotator. To take advantage of the time-
dependent structure and the high temporal resolution of
the signals, our goal is to use RNNs to detect patterns in
the EEG structure that impact the subjective sleep quality,
and predict SSQ without using the technician’s annotations
or variables derived from the signal.

II. METHODS

We examined EEG recordings of a single night of
sleep obtained in the Sleep Heart Health Study (SHHS;
https://sleepdata.org/datasets/shhs) [16]. The SHHS data



set consists of 6441 overnight polysomnographic (PSG)
recordings obtained from healthy, community-dwelling
men and women aged 40 and older [17]. For our analysis,
we only kept 4885 out of the 6441 PSG recordings,
which had reported SSQ and whose EEG recording was
of sufficient quality, and did not use the 1556 others.
Among the PSG data, we specifically included filtered
EEG data (collected at 125 Hz with a high pass filter
at 0.15 Hz) collected from a central (C3/A2) lead. There
were 4 electrodes used in SHHS, which are bilaterally
placed (2 on each side, but in the same location). Several
phenomena of sleep are localized in different brain regions,
and more EEG derivations would be interesting, but these
were not available as it was not done in SHHS. For
specific analyses, we included technician annotations of
these EEG signals, which parsed each 30 second epoch
into a stage of wake, non-rapid eye movement (NREM)
sleep stage 1 (N1), NREM sleep stage 2 (N2), NREM sleep
stage 3 (N3), and rapid eye movement sleep (REM). We
also included mathematical rearrangement of this staging
as total sleep time, wake after sleep onset (WASO), and
sleep efficiency, among others. These variables can be
directly derived from the staging with simple formulas. For
example, sleep efficiency is equal to the total time asleep
divided by the time of the recording. Additional variables
included in the models were related to demographics (race,
ethnicity, gender, education, marital status), body habitus
(age, height, hip and waist circumference, body mass index,
weight), and habitual amount and type of caffeine and
alcohol intake. Our goal was to incorporate the EEG signals
using RNNs, instead of using the technician annotations
and the derived variables, and to examine whether these
data could be used to predict the SSQ obtained on the
subsequent morning. SSQ was determined through two
questions that examined sleep depth (1 to 5 on a Likert-like
scale, anchored by deep and light) and sleep restfulness
(1 to 5 on a Likert-like scale, anchored by restful and
restless). It is part of the SHHS dataset. These ratings of
sleep quality have been used in previous research ([2], [3]).
Participants also reported the length of their sleep (how
long they estimate the total time they were asleep during
the night) and how well they slept compared to their usual
sleep night. Following the work of Kaplan et al. ([2]) we
focus on predicting subjective depth and restfulness, as the
quality of sleep compared to usual is highly dependent on
the participants sleep habits, and the information needed to
predict it won’t necessary be contained in the EEG signals
themselves.

Previous approaches use the coefficient of determination
R2 to ascertain the quality of prediction [2]. R2 represents
the proportion of variance explained by the statistical
analysis. We use R2 as our main metric to compare our
results to the ones of previous studies and to quantify
the importance of derived variables and EEG signals. For
example, if we are able to explain 70% of the variance
using two variables x and y, and 60% when using only
x, we can say that y explains 10% of the variance that

are unexplained by x. When fitting a regression model
to n observations y1, ..., yn, with ŷ = 1

n

∑n
i=1 yi the

mean of the observed data, and ȳ1, ..., ȳn the predicted
values associated with each observation, the coefficient of
determination is

R2 = 1−
∑m

i=1(yi − ȳi)
2∑m

i=1(yi − ŷ)2
(1)

We created train, development, and test sets to tune
hyper-parameters on the development set and calculate R2

on the test set prediction. All the results will be given on
the test set.

We tried different preprocessing techniques to analyze
EEG and feed the signal into our RNN model. We trained
each model with data preprocessed in the way described
below. We first performed a Fast Fourier Transform (FFT)
[18] before determining the relative power in traditionally-
determined spectral bands [19] : delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), sigma (12–15 Hz), and beta
(15–30 Hz). All bands are normalized to the overall power
in the data set. We finally performed a wavelet transform
of the EEG. We found that only performing FFT led to the
best performance for the different tasks, on our test set.
We thus chose to present, in the next section, the results
obtained when training our model with data preprocessed
using FFT.

In order to assess the performance of RNNs, we applied
several regression models [20] to predict subjective depth
and restfulness from participant information and derived
PSG variables. We used random forest [21], AdaBoost,
gradient boosting regression, and support vector machine.
We compared their performance to the performance of fully
connected neural networks. The regression models take as
input the categorical variables and the variables derived by
technicians from the EEG signals. We also trained these
models to predict the self-reported length of sleep and
quality of sleep compared to usual.

To take the EEG signals into account, we then ex-
perimented with different architectures combining con-
volutional layers, bi-directional long short term memory
(LSTM) layers [22], and fully connected dense layers. We
tried different losses such as mean-squared error or cross-
entropy loss, with relu or sigmoid activation functions to
train the neural networks. The architecture that gave the
best prediction is represented in Fig. 1. This model was
trained without taking the derived variables or technician
annotations into account. The results presented in the next
section correspond to the best performance on the test set,
after comparing models different architectures.

We calculated the coefficient of determination obtained
when predicting with EEG and categorical variables related
to the participants’ health and lifestyle combined, or just
EEG alone, to quantify how much information is contained
in the EEG themselves.

To guide and help the network detect useful features
from the signals throughout the learning, we used transfer
learning. Transfer learning is a method that focuses on
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Figure 1. Neural network architecture that gave the best prediction.

storing knowledge gained while solving one problem and
applying it to a different but related problem. If a variable
x is very correlated with the variable y we want to
predict, a model that first learns how to predict x can be
trained to learn y very efficiently. Our idea was to ensure
that the network learns features of the EEG data that is
representative of the SSQ. We pre-trained the network to
learn variables correlated with SSQ according to Kaplan et
al. [2], before training it to learn to predict SSQ. It also
allowed us to examine how well the network can predict
simple variables from EEG signals and gain insight into
how RNNs understand EEG structure.

Following the work of Kaplan et al. [2], we decided
to start by training the network to learn sleep efficiency
(amount of sleep time divided by total time in bed) and
wake after sleep onset (WASO, amount of wake sleep that
occurs interspersed with sleep throughout the night), the
two variables that are most correlated with SSQ. We then
trained the neural network to predict the percent of sleep
time in REM sleep (tmremp), and the number of shifts
between N3 and N1 or N2 per hour of sleep (hstg342p).
We chose these variables given their direct link to EEG
structure and hypothesized link to SSQ. Given the results
of these predictions, to perform transfer learning, we chose
to pre-train the convolutional and recurrent layers of the
neural network predicting fraction of sleep time in REM
sleep before predicting SSQ. Technician annotation of sleep
stages was not used in this analysis.

After experimenting with transfer learning, we wanted
to account for specific individual differences between par-
ticipants. We used hierarchical cluster analysis (HCA) [23]
to define groups of participants who will rate their sleep
quality the same way (e.g., a group that will be very

sensitive to the total sleep time). HCA works as follows.
Once a distance between participants is defined, it first finds
the two most similar participants (P1, P2) to create the first
cluster C1, and then recursively adds the participant that
is the closest to Cn = (P1, P2, . . . , Pn) to create cluster
Cn+1. We chose to use the complete linkage method to de-
fine the distance between the merged cluster and the other
participants as the maximum of the pair of dissimilarities
in each case. For the distance between participants, we
used the Euclidean distance between vectors composed of
a set of meaningful variables representing the participant’s
health and lifestyle. We tried different sets of variables
(including more or less information) and will present the
results obtained with the best combination of variables we
found.

After performing HCA with different variable sets and
defining subgroups of similar participants, we applied
Lasso regression and Random Forests to the different
clusters to find the subgroups of participants who have
specific objective correlates that are more predictive and
who will be mostly responsive to the same variable found
in the data set. Once such groups are defined, it should
be easier for our model to predict SSQ of participants
within each subgroup since SSQ would be more correlated
with specific variables. Thus, we trained, fit the parameters,
and tested our regression and neural network models on
each clusters, with and without taking into account the
technicians annotations and derived variables.

III. RESULTS

A. Predicting Subjective Sleep Quality

The results of the different regression models and the
multi-layer perceptron (a fully connected dense neural
network) can be seen in Fig. 2. The performance on
predicting sleep depth is significantly higher than in prior
work on the same data set [2]. Kaplan et al. only used a
training and a test set, so we compare their results with our
results on the development set. For sleep depth our methods
achieve R2 ∈ [0.13 : 0.22] over R2 ∈ [0.07 : 0.09].
For sleep restfulness we achieve R2 ∈ [0.13 : 0, 21] over
R2 ∈ [0.09 : 0.13]. The best performance on our test set,
R2 = 0.13 when predicting depth and R2 = 0.11 when
predicting restfulness, was obtained using gradient boosting
regression.

Regression methods achieve good results on predicting
self-reported sleep length, with a coefficient of deter-
mination close to 0.3 on the test set. The technicians
annotations contain sleep efficiency (percent of time asleep)
and total time of recording, that easily gives the total time
asleep during the night, which is highly correlated with
the self-reported time asleep. The prediction of quality of
sleep compared to usual is, for most models, better than
subjective depth or restfulness. We believe that it is due to
the high correlation with sleep habits variables contained
in the data set.

With recurrent and convolutional neural networks, we
achieved at best R2 = 0.04 on the test set. This is
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Figure 2. R2 scores for different models when predicting the sleep
quality from derived variables and patient information. The bars indicate
the performance on the test set. The black dots are the scores from a 5-
fold cross validation on the training set, the black bar is the average score.
The blue bar represents the prediction of sleep depth, the orange bar the
prediction of sleep restfulness, the green bar the prediction of quality of
sleep compared to usual and the red bar the prediction of self-reported
sleep length.

Table I
R2 RESULTS.

EEGs alone EEGs and categorical variables

Sleep Efficiency 0.72 0.7
WASO 0.73 0.72
tmremp 0.60 0.40
hstg342p 0.29 0.21
Depth 0.007 0.04
Restfulness 0.01 0.05

surprising because the traditional feature branch generally
proved quite robust to changes, but it can be explained by
the fact that the fully connected dense layers have more
features in the input layer to overfit on.

B. Predicting Intermediate Variables for Transfer Learning

We then performed transfer learning by training the
network to predict intermediate variables such as WASO,
sleep efficiency, the time spent in REM sleep and the
number of shifts between sleep stages 2, 3 and 4. The
results obtained for different steps of transfer learning are
shown in Table I.

We trained the network to learn these variables from
the EEG signals alone, and from the EEG signals com-
bined with categorical variables. For the variables directly
related to the EEG structure, we obtain better results when
predicting form the EEGs alone. Categorical variables don’t
contain any information about the EEG structure and make
the prediction task more difficult.

The network is able to learn relatively well to predict
sleep efficiency and WASO. It learns how to distinguish
awake from non-wake stages. It predicts WASO a little bit
better, as the neural network has to understand when the
participant is awake only at the end of the recording.

The results for percent of REM sleep are also promising.
Being able to explain 60% of the variance when the inputs
are only EEG signals shows that the neural network can
learn from the EEG to predict the time spent in REM
sleep. As we believed that part of the information needed

to predict SSQ is the transitions between REM and non-
REM sleep, we decided to perform transfer learning by pre-
training the convolutional and recurrent layers of the neural
network (layers that only take the signal as input) to learn
how to predict fraction of REM sleep, before predicting
SSQ.

Predicting shifts between N3 and N1 or N2 per hour was,
however, more difficult. The poorer results show that it is
still difficult for the neural network to learn sleep structure
and its complex variables. For both percent of REM sleep
and shifts between N3 and N1 or N2, the prediction is
better when given EEG as only inputs. This is due to the
derived categorical variables not being correlated with the
fraction of REM sleep or shifts between N3 and N1 or N2,
and the neural network tends to over-fit them. It makes the
prediction worse on the development set.

When predicting depth and restfulness, we did not get
better results than with regression models, with our best R2

coefficient being 0.05 for restfulness and 0.04 for depth,
when given as inputs EEG combined with categorical
variables. We also tried predicting subjective depth and
restfulness of sleep from the EEGs only, resulting in a
very low R2 coefficient (less than 0.01). The predic-
tion of depth and restfulness is significantly better when
given categorical variables. Contrary to sleep efficiency
and WASO, these variables are subjective and cannot be
directly inferred from the EEG structure itself. Information
about the participant is needed in order to capture the
specificity of this rating.

C. Hierarchical Cluster Analysis

We then performed the HCA to account for individual
characteristics of the participants. Random Forests and
lasso regression algorithms revealed several clusters of par-
ticipants who seem to be responsive to specific variables.
We chose to analyze two of these groups, G1, mostly
constituted by participants having high caffeine intake
(determined either by the self-reported number of cups of
coffee the participant had during the day or before going to
bed) who appear to be more responsive to the total sleep
time, and G2, mostly constituted by participants having
high body mass index. We then performed prediction on
these subgroups and their complements GC

1 and GC
2 .

On each of these subgroups, Random Forest best predicts
the subjective sleep restfulness. Table II presents the results
of Random Forest and the RNNs model, which takes as
input the EEG signals and SHHS variables.

The prediction of all models on the clusters G1 and
G2 are much better than the prediction on the whole data
set. This can be explained by the sensitivity of participants
in each group to similar hidden variables that the models
are capable to predict. However, the random forests model
taking as input the categorical and derived variables still
explain more variance than the recurrent neural network
model taking as input the EEG signal and categorical
variables. The information needed to predict SSQ might
be contained in the derived variables, and extracting this



Table II
R2 RESULTS AT PREDICTING SLEEP RESTFULNESS AFTER HCA.

Cluster RNNs Random Forest Model

G1 High Caffeine Intake 0.16 0.33
GC

1 Low Caffeine Intake 0.07 0.18
G2 High BMI 0.13 0.28
GC

2 Low BMI 0.04 0.17

information from the signal itself before predicting SSQ
is a more complicated task. We can see that the RNNs
model is able to extract useful information from the EEG
recordings and understand what each subgroup of patients
is sensitive to. It obtains a R2 score of 0.16 on cluster G1,
which is significantly higher than the R2 = 0.05 obtained
on the whole dataset.

The result on the complement group of G1 is still better
than the prediction on the total data set. The cluster G1

is comprised of 2244 participants over 4885. By being
able to calculate the distance of an individual to G1 and
GC

1 from categorical variables, we can use the trained
Random Forest model on the corresponding group for all
individuals, leading to a total coefficient of determination
R2 = 0.33·2244+0.18·2641

4885 = 0.25. This coefficient of deter-
mination is much higher than the one obtained on the test
set by our best model. For the neural network model, the
total coefficient of variation is R2 = 0.16·2244+0.7·2641

4885 =
0.11. We expect that we would get much better results at
predicting sleep depth after performing the same clustering
analysis.

IV. DISCUSSION

The different results allow us to consider that RNNs are
able to capture some information and understand relatively
simple variables such as sleep efficiency, WASO, or pro-
portion of REM sleep from EEG signals alone. However,
RNNs have difficulty extracting more complex variables
such as the number of shifts between N3 and N1 or N2
per hour.

The difference in performance between the RNNs model
and the regression model may not be due to the ability of
the RNNs to extract useful information from the data but
from the difficulty of the task itself. We were requiring
the RNNs model to predict SSQ from EEG signals and
information about the participants. It then needed to extract
information from very long, noisy recordings at the same
time as understanding how the participants rate their night
of sleep and what hidden variables are correlated with
SSQ. It makes sense that the performance is lower than
when using categorical variables and the derived variables
extracted from the signal by a technician, that, if they
contain less information, are much easier to understand and
analyze.

The performance of RNNs for predicting SSQ is very
low despite the fact that it is able to predict sleep effi-
ciency and WASO, the two variables most correlated with
SSQ. Furthermore, its performance significantly improves

when predicting on specific subgroups of participants (0.11
compared to 0.05). RNNs are not able to identify and
extract from EEG signals the information explaining the
variation in SSQ between individuals. The difference in
results for predicting sleep restfulness after performing the
HCA shows that, in order to predict SSQ, understanding
the participants’ subjectivity and way of rating their sleep
may be crucial. In this objective, it would be very useful
to have recordings of several nights per person. Being able
to sub-categorize the participants might change the way
doctors treat their patients, as they could find the precise
element that causes sleep disorders.

Participants rate their SSQ immediately after awakening.
It is therefore possible that SSQ could be more dependent
on the events at the end of the night. Future work could take
into account the time course of the signal and determine the
best temporal segment to consider to get the most accurate
prediction.

Based on our current results, RNNs were not signif-
icantly better at determining SSQ from EEG than more
traditional machine learning techniques. However, because
they can learn information from the EEG signals, RNNs
might still be very useful in future research trying to predict
SSQ or understand what other variables individuals react
to, using new data involving several recordings per person
or more extensive environmental data that could influence
SSQ.

V. CONCLUSION

Using RNNs to predict SSQ from the EEG signal is
not as accurate as previous approaches that predict SSQ
using annotated data and variables derived from the sig-
nal by a technician. We showed that RNNs are able to
accurately learn sleep variables from the signal such as
sleep efficiency or sleep time spent in REM sleep. These
variables are correlated with SSQ but learning to extract
such variables from EEGs in order to predict SSQ is a
very complicated task. We showed that defining subgroups
of adults whose SSQ depend on particular variables with
Hierarchical Analysis leads to much better results, for
both our model and previous approaches. It suggests that
finding better ways to categorize individuals, understand
what variables each patient is sensitive to and how they
rate their own sleep quality, may be a promising direction
for future work.
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