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Abstract—Core body temperature measurement using an
ingestible pill has been proven effective for field-based am-
bulatory applications. The ingestible pill overcomes many
impracticalities related with traditional methods of assessing
core body temperature, however, it suffers from two key
issues: random gaps due to missing data and outliers due
to electromagnetic intereference. In this paper, we propose a
principled convex optimization based framework for prepro-
cessing the raw core body temperature signal. The proposed
framework assumes that the raw core body temperature
signal consists of two components: a smooth low-frequency
component and a transient component with sparse outliers.
We derive a computationally efficient algorithm using the
majorization-minimization procedure and show its perfor-
mance on simulated data. Finally, we demonstrate utility of
the proposed method for estimating the circadian rhythm of
core body temperature in cognitively normal elderly.

I. INTRODUCTION

Circadian rhythms are physiologic and behavioral cycles
with a recurring periodicity of approximately twenty-four
hours in healthy individuals [17]. The biological processes
of sleep-wake cycle and body temperature are controlled
by the circadian rhythms and disruptions in these rhythms
can lead to circadian rhythm disorders such as an irregular
sleep-wake rhythm disorder, which is prevalent in sub-
jects with traumatic brain injury [18]. Moreover, circadian
rhythm alterations are observed in age-related diseases such
as Alzheimer’s disease [2], [9], [13], [18].

Core body temperature (CBT) is considered an objective
measure of the circadian rhythm and is known to char-
acterize their circadian phase [15]. The CBT is typically
measured from either the esophagus, naso-pharynx, rectum
or tympanum/auditory meatus [6]. There is growing inter-
est in utilizing ingestible capsules such as the CorTemp
ingestible pill (CorTemp R© HQ Inc., Palmetto, FL, USA.)
for measuring CBT [10]. The CorTemp R© ingestible pill
sensor wirelessly transmits temperature measurements to
a recorder worn on the waist as it travels through the
digestive tract. The CBT measured using the ingestible
pill has a good agreement with the rectal core body
temperature, which is a gold standard method of circadian
rhythm measurement [1], [3]. One of the major challenges
in measuring circadian rhythm using the CorTemp pill is
that the raw CBT signal often contains random gaps and/or

outliers [7]. Furthermore, in some subjects the pill passes
in less than 24 hours due to which estimating circadian
rhythm becomes difficult. The presence of random gaps
and outliers in the raw CBT signal can lead to inaccu-
rate measurements of several features of an individual’s
circadian rhythm, (e.g., period, mean temperature, timing
of peak and nadir temperatures etc.) [11]. As a result, the
data is often discarded. Among the causes of outliers in the
raw CBT signal, the common ones are 1) close proximity
to electronic devices and 2) ingestion of liquids at a higher
(likewise lower) temperature than the room temperature
[16]. In addition to these outliers, the CBT signal often
contains missing data when the waist-worn receiver is out
of range, particularly during showers as the receiver is not
waterproof.

Missing data upto a few samples can be imputed based
on traditional methods such as averaging, similar response
pattern imputation, and maximum likelihood estimation
[4]. However, most of these methods assume that the
underlying data is stationary, which is not met in the
case of CBT signals. In addition, traditional methods for
outlier removal consist of either replacing them with more
moderate values (e.g., mean of few preceding samples) or
treating them as missing values and imputing as above.
However, if the data are not missing completely at random,
which is the case for the CBT signals, such outliers removal
techniques bias the underlying signal model. Further, it is
also possible to use the Lomb-Scargle periodogram [8],
[12] to estimate period in the presence of missing values
or non-uniformly sampled data. However, in the event of
a sub-optimal signal-to-noise ratio (SNR), these estimates
are not accurate [14].

In this paper we propose a principled convex optimiza-
tion based framework for nonlinear smoothing of the circa-
dian rhythm data with missing values. To our knowledge,
this is the first such unified framework proposed for pre-
processing the CBT signal that is capable of tackling both
random gaps and outliers in a single pass. We hypothesize
that the proposed framework improves SNR of the CBT
signal thereby leading to a better estimate of the period
using the Lomb-Scargle Periodogram.



II. PRELIMINARIES

A. Notation

We denote vectors and matrices by lower and upper case
letters respectively. The N -point signal y is represented by
the vector

y =
[
y0, . . . , yN−1

]T
, y ∈ RN , (1)

where [·]T represents the transpose. The `1 and `2 norm of
the vector y are defined as

‖y‖1 :=
∑
n

|yn|, ‖y‖2 :=

(∑
n

|yn|2
)1/2

(2)

We define the second order difference matrix D as

D =


1 −2 1

1 −2 1
. . . . . .

1 −2 1

 . (3)

Using the matrix D of size (N −1)×N , the second-order
difference of an N -point discrete signal x is given by Dx.

B. Encoding random gaps in the input signal

Suppose only K samples of an N -point input signal q
are observed, where K < N . This is particularly true when
a given signal q contains gaps that are randomly distributed
or when non-uniformly sampled data is regridded to a
uniform grid. We express the observed values q̂ as

q̂ = Sq, q̂ ∈ RK , q ∈ RN , (4)

where S ∈ RK×N is a sampling matrix. As an example, if
only the first, second and last elements of a 5-point signal
q are observed, then the matrix S is given by

S =

 1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

 , (5)

Note that the matrix S is deduced from the input data by
simply deleting the relevant rows from an N - by-N identity
matrix. For the example shown above, the third and fourth
rows of a 5-by-5 identity matrix are deleted to derive the
matrix S. The matrix S satisfies the properties listed below.
We will use these properties throughout the paper.

1) The matrix S satisfies the following identities,

SST = I, (6)

where I is the K ×K identity matrix. In addition,

STS = diag(s), s ∈ RN , (7)

where diag(s) denotes a diagonal matrix with s as
its diagonal.

2) The matrix ST represents zero-filling. As an exam-
ple, for the matrix S in (5), we have

ST y =


1 0 0
0 1 0
0 0 0
0 0 0
0 0 1

 ·
 y0
y1
y2

 =


y0
y1
0
0
y2

 . (8)

III. NONLINEAR SMOOTHING OF DATA WITH RANDOM
GAPS AND OUTLIERS

A. Problem formulation

Let y be the N -point observed signal with random gaps
and outliers in presence of Gaussian noise. The signal
model can be written as

Sy = Sf + x+ w, (9)

where f is the smooth signal, x is the sparse signal
representing outliers, S is the given sampling matrix and
w represents additive white Gaussian noise with a standard
deviation of σ. The matrix S encodes the position of the
gaps and we assume it to be known. In order to estimate
the underlying smooth signal f , we consider the following
sparse-regularized optimization problem

{f̂ , x̂} = argmin
f,x

{
F (f, x) :=

1

2
‖Sy − Sf − x‖22+

λ1
2
‖x‖1 +

λ2
2
‖Df‖22

}
, (10)

where λ1 and λ2 are the regularization parameters. The ob-
jective function in (10) promotes the sparsity of the signal
x using the `1 norm, while preserving the smoothness of
f using the `2 norm over its second-order difference. It is
worth noting that the proposed objective function does not
require the input signal to be stationary.

B. Algorithm

We derive an algorithm for the proposed objective func-
tion in (10) using the Majorization-Minimization (MM)
procedure [5]. Note that the proposed objective function
(10) is convex and hence global minimum of (10) can be
reliably obtained. The MM principle is well-established and
consists of the iteration

{f (i+1), x(i+1)} = argmin
f,x

FM(f, x;x(i)), (11)

where i is the iteration index and FM denotes a majorizer
of the objective function F . In particular, we have

FM(f, x; v) > F (f, x), for all f, x, v, (12)

FM(f, v; v) = F (f, v), for all v. (13)

We define the majorizer FM as

FM(f, x; v) :=
1

2
‖S(y − f)− x‖22 +

λ2
2
‖Df‖22

+
λ1
2
xT
[
W (v)

]
x, (14)



where W (v) is a diagonal matrix defined as[
W (v)

]
n,n

=
1

|vn|
. (15)

To obtain the solution to (11), we minimize (11) with
respect to f and x alternatively. Minimizing FM with
respect to x gives

x =
(
I + λ1[W (v)]

)−1
S(y − f). (16)

Equivalently,

xn =
1

1 + λ1[W (v)n,n]
[S(y − f)]n,n (17)

=
1

1 + λ1/|vn|
[S(y − f)]n,n (18)

=
|vn|

|vn|+ λ1
[S(y − f)]n,n . (19)

Using (16) in (14) gives

FM(f ; v) =
1

2
‖S(y − f)−

(
I + λ1[W (v)]

)−1
S(y − f)‖22

+
λ2
2
‖Df‖22 +

(
λ1
2
(y − f)TST

(
I + λ1[W (v)]

)−1

× [W (v)]
(
I + λ1[W (v)]

)−1
S(y − f)

)
, (20)

which can be re-written as

FM(f ; v) =
1

2
‖A1(v)S(y − f)‖22 +

λ2
2
‖Df‖22

+
1

2
(y − f)TST [A2(v)]S(y − f), (21)

where A1 and A2 are diagonal matrices defined as

[A1(v)] := I −
(
I + λ1[W (v)]

)−1

(22)

[A2(v)] := λ1

(
I + λ1[W (v)]

)−1

×

[W (v)]
(
I + λ1[W (v)]

)−1

(23)

The matrices A1 and A2 can be written alternatively using
(19) as

[A1(v)]n,n =
λ1

|vn|+ λ1
, (24)

[A2(v)]n,n =
λ1|vn|

(|vn|+ λ1)2
. (25)

On the other hand, minimizing FM with respect to f
gives

f =
[
ST ([A1(v)]

2 + [A2(v)])S + λ2D
TD
]−1

× ST ([A1(v)]
2 + [A2(v)])Sy. (26)

Note that

[A1(v)]
2
n,n + [A2(v)]n,n =

(
λ1

|vn|+ λ1

)2

+
λ1|vn|

(|vn|+ λ1)2

(27)

=
λ1

|vn|+ λ1
. (28)

Algorithm 1 DRAGO iterative algorithm for smoothing of
data with random gaps and outliers. The objective function
is given in (10)

1: input: y ∈ RN , λ1, λ2

2: initialize: x = Sy

3: repeat
4: An,n = λ1/(|xn|+ λ1)

5: B = STAS + λ2D
TD

6: f = B−1STASy

7: xn = |xn| [S(y − f)]n / (|xn|+ λ1)

8: until convergence

As a result, we have

f =
(
ST [A(v)]S + λ2D

TD
)−1

ST [A(v)]Sy, (29)

where [A(v)] is a diagonal matrix with entries

[A(v)]n,n =
λ1

|v(n) + λ1|
. (30)

Note that the matrix to be inverted in (29) is banded1. As
a result, the equation (29) can be implemented efficiently.
The MM procedure (11) gives rise to the following iterative
algorithm for smoothing of data with random gaps and
outliers (DRAGO), which is also summarized in Table 1.

[A(i)]n,n =
λ1

|x(i)n |+ λ1
, (31a)

f (i+1) =
(
STA(i)S + λ2D

TD
)−1

STA(i)Sy, (31b)

x(i+1)
n =

|x(i)n |
|x(i)n |+ λ1

[
S(y − f (i+1))

]
n,n

. (31c)

In order to avoid the zero-locking issue, wherein a chosen
value for x(0) results in all subsequent iterations to be zero,
i.e., xi+1

n = 0, i > 0, for all n, we set the initial value for
the iterative algorithm as x(0) = Sy.

C. Example

We illustrate the performance of the proposed DRAGO
method for smoothing data with random gaps and outliers
using the following synthetic example. Shown in Fig. 1(a)
is the simulated data which consists of two low-frequency
sinusoids that are uniformly sampled. The Lomb-Scargle
power spectral density (PSD) estimate is shown in Fig.
2(a). The Lomb-Scargle periodogram method does not
require the underlying data to be uniformly sampled and
can handle missing values [8], [12]. Note that the Lomb-
Scargle PSD estimate shows prominent peaks (red circles
in Fig. 2(a)) at the two frequencies of x. Figure 1b shows
the noisy data y with random gaps (45% missing) and
outliers. The Lomb-Scargle PSD estimate of y is shown

1A banded matrix is a sparse matrix whose non-zero entries are
confined to a diagonal band and zero or more diagonals on either side.
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Figure 1: Illustration of the proposed DRAGO method on
simulated data.

in Fig. 2(b). Note that the peaks are no longer prominent
and a false peak appears at 0.018 Hz. Although lowering
the threshold for peak detection eliminates the false peak,
it also eliminates the true peak at 0.045 Hz. We set the
value of the regularization parameters λ1 and λ2 manually
to obtain the lowest denoising and smoothing error using
the root mean square error (RMSE) which is defined as

RMSE(xorg, xest) :=
‖xorg − xest‖22
‖xorg‖22

. (32)

Figure 1(c) shows the estimated smooth signal using
DRAGO and the obtained RMSE. The outliers estimated
are shown in Fig. 1(c). It is worth noting that the estimated
smooth signal does not contain any outliers. Shown in Fig.
2(c) is the Lomb-Scargle PSD estimate of the estimated
smooth signal f . Notice that the two peaks are distinctly
visible and the power/frequency ratio decays with increas-
ing frequency values. The value of the objective function in
(10) after each iteration of the DRAGO iterative algorithm
using the MM procedure is shown in Fig. 3.

It can be seen that the DRAGO iterative algorithm
converges in about 5 iterations.

IV. ESTIMATING CIRCADIAN RHYTHM USING DRAGO
PROCESSED CORE BODY TEMPERATURE SIGNAL

We now illustrate the application of the DRAGO iter-
ative algoritm for estimating circadian rhythm from raw
CorTemp pill data. Figures 4(a) and 4(c) show the raw
data from two fully entrained subjects who participated
in a study on orexin and tau pathology in cognitively
normal elderly. The circadian rhythm i.e., period of the
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Figure 2: Lomb-Scargle power spectral density estimates
for the (a) synthetic smooth data, (b) noisy data with
random gaps and outliers and (c) smooth signal estimate
using DRAGO.
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Figure 3: Value of the objective function in (10) for every
iteration using the synthetic data in Fig. 1 as an example.

CorTemp data, estimated using the Lomb-Scargle PSD
estimate is shown in Fig. 5(a) and Fig. 5(c) for Subject
1 and 2 respectively. These subjects were fully entrained
in a 24hr environment, confirmed with 7-day actigraphy,
and had no complaints of circadian rhythm sleep disorders.
Entrainment is defined as alignment of the circadian system
to the 24hr day. As a result, these subjects are expected to
demonstrate roughly a 24hr circadian rhythm. The subjects
were administered the pill on the first night of their
scheduled 2 night in-lab polysomnography visits and the
data was collected until the pill was passed by the body
(approx. 36-40 hours). The sampling rate for the CorTemp
data was fixed at 1 sample per 25 seconds. Note that the
sampling rate is not uniform since datapoints are recorded
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Figure 4: Core body temperature data using CorTemp ingestible pill from fully entrained cognitively normal subjects (a)
and (c). The DRAGO smoothed signal is shown in (b) and (d) for the two subjects respectively.

when the subjects manually read the temperature data.
All subjects signed informed consent documents and the
protocol for the study was approved by the NYU IRB and
the Mount Sinai IRB.

Figures 4(b) and 4(d) show the result of using the
DRAGO iterative algorithm on the raw CorTemp data. Note
that the data has been regridded to a sampling rate of
1 sample per second. It can be seen that the estimated
smooth data contains no outliers (e.g., significant outliers
in Fig. 4(c) around 6PM) and the missing data has been
approximated with a smooth segment (e.g., the segment of
missing data in Fig. 4(a) around 3AM on Night 1). It worth
noting that estimates of the mean temperature from the
smooth signal estimated using DRAGO are more accurate
due to the absence of outliers. The estimated circadian
rhythm using the smoothed CorTemp data for the Subjects
1 and 2 can be seen in Fig. 5(b) and Fig. 5(d) respectively.
Figure 6 shows the circadian rhythm estimated from the
raw data and the DRAGO processed data for all the 18
subjects who participated in the parent study. It can be seen
that processing the CBT signal using DRAGO provides
better circadian rhythm estimates than using the raw signal
alone. The DRAGO iterative algorithm takes on an average
0.67 ± 0.02 seconds for a CBT signal with a duration of

approx. 45 hours.
One of the limitations of the proposed DRAGO frame-

work is that it requires the setting of two regularization
parameters λ1 and λ2. For simulated data where the
ground-truth is available, often the parameters are set so
as to minimize the error criteria (RMSE). However, when
no ground-truth data is available, a suggested method is
to synthetically set a segment of raw data as missing
and/or with outliers and tune the two parameters so as
to obtain the lowest RMSE for that segment. We used
this method for processing the CBT signals from the
18 participants shown in Fig. 6. In addition, as is seen
often with imputation methods, when a significantly large
segment of data is missing, the reconstructed signal using
the proposed DRAGO framework may not be accurate. Our
ongoing work is directed toward developing a theoretical
framework for the setting of regularization parameters as
well as deriving bounds on the length of missing data when
the reconstructed signal using DRAGO may not be reliable.

V. CONCLUSION

Ingestible pills allow feasible monitoring of core body
temperature in a home-based ambulatory setting. However,
the presence of random gaps and outliers hinders the
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Figure 5: Lomb Scargle PSD estimates for the corre-
sponding data in Fig. 4. Note that the circadian rhythm
calculcated from the raw data in Fig. 4(a) and Fig. 4(c) is
inaccurate as we expect a roughly 24hr circadian rhythm.
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Figure 6: Circadian rhythm estimates using Lomb-Scargle
Periodogram directly on the raw and on the DRAGO
processed CBT signal from N=18 participants.

assessment of circadian rhythm and its features. In this
paper we develop a principled convex optimization based
framework for smoothing the core body temperature data
with random gaps and outliers (DRAGO). We propose
a convex objective function utilizing the sparsity of the
outliers and the smoothness of the underlying signal. We
derive a computationally efficient iterative algorithm using
the majorization-minimization procedure and demonstrate

its performance on simulated data as well as on actual
data from fully entrained subjects with an expected 24hr
circadian rhythm. We show that the proposed method can
reliably estimate the underlying CBT signal and its features
such as the period and phase.
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