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Abstract— Electroencephalogram (EEG) is a widely used 
non-invasive brain signal acquisition technique that 
measures voltage fluctuations from neuron activities of the 
brain. EEGs are typically used to diagnose and monitor 
disorders such as epilepsy, sleep disorders, and brain 
death and also to help the advancement of various fields of 
science such as cognitive science, and psychology. EEG 
signals usually suffer from a variety of artifacts caused by 
eye movements, chewing, muscle movements, and 
electrode pops, which disrupts the diagnosis and hinders 
precise representation of brain activities. This paper 
proposes a deep learning based model to detect the 
presence of the artifacts and to classify the kind of the 
artifact to help clinicians resolve problems regarding 
artifacts immediately during the signal collection process. 
The model is optimized to map the 1-second segments of 
raw EEG signals to detect 4 different kinds of artifacts and 
the real signal. The model achieves a 5-class classification 
accuracy of 67.59%, and a true positive rate of 80% with a 
25.82% false alarm for binary artifact classification with 
time-lapse. The model is lightweight and could potentially 
be deployed in portable machines. 

I. INTRODUCTION 
The study of the brain, neuroscience, to understand 
humans better has been a great research area that 
combines scientists and engineers across various 
disciplines. Much advancement in neuroscience has 
come from analyzing accurate recordings of the brain. 
An electroencephalogram (EEG) is a popular non-
invasive method for acquiring brain signals. 
Unfortunately, EEG signals suffer from artifacts that are 
both physiological and technical, and the artifacts are 
usually not documented well [1]. Artifacts decrease the 
signal to noise ratios of signals and disrupt the accurate 
collection of brain data. A system that detects the 
presence, and the character of artifacts during the 
collection of the EEG signals may lead to discoveries on 
the human brain faster by reducing unnecessary time 
spent sorting through artifacts. 

We present a system that can quickly identify the 
presence of artifacts and the type if present, during the 
EEG wave collection. The purpose is so that a clinician 
can resolve the problem immediately to ensure that the 
collected data are artifact-free. 

We utilize an ensemble system that contains multiple 
optimized deep learning architectures with a sliding 
window technique that uses multiple time segments to 
enhance the accuracy. The system aims to be memory 
efficient, and computationally light while being fast 

enough to be both implemented on portable systems, 
and detect and classify artifacts in real-time, potentially 
in a clinically setting. 

The paper is organized as follows. In Section II, related 
works on automatic artifact detectors for EEG signals 
are presented. In Section III, we describe the data, the 
model, and the experiment. In Section IV, our 
experimental results are shown and analyzed. Finally, in 
Section V, conclusion and future works are presented. 

II. RELATED WORK 
To achieve this goal, Temple University’s TUH EEG 
Corpus (TUEEG) has constructed a large data set of 
EEG waves from various patients, specifically labeled 
for artifacts [2]. This data provide engineers and 
scientists some basis to test their ideas and help advance 
science and technology. 

 Golmohammadi et al. utilizes hidden Markov models, 
deep learning models, and statistical language models to 
build a model that achieves a true positive rate of 90% 
and a false alarm rate of below 5% on events of clinical 
interests, namely spikes, generalized and periodic 
epileptiform discharges [3]. This work proves the 
viability of big data and deep learning methods in 
detecting events in EEG signals. However, this model is 
only able to distinguish 14.04% of the artifacts correctly 
from the data, as the study in [3] was not towards 
detecting artifacts. 

Other works for detecting EEG artifacts include 
FASTER by Nolan [4], which uses independent 
component analysis (ICA), and Morphological 
Component Analysis (MCA) by Singh [5]. These signal 
processing techniques work by separating multivariate 
signals into subcomponents. Although they tend to have 
higher accuracies, they are computationally very 
intensive. Nolan et al. achieves more than 90% 
sensitivity on data with more than 64 channels, but the 
sensitivity drops to 5.88% when the number of channels 
decreases to 32 [4]. This algorithm takes an hour per 
dataset of around 400 seconds to yield the results using 
a machine with a 64-bit dual-core machine. Singh et al. 
only shows the availability of MCA for the signal 
analysis but mentions that 1024 samples of data that are 
sampled at 173.61Hz take about 6 seconds, which is 
around 1.01s computation time per 1 second of a signal 
[5]. These characteristics are not suitable for a fast EEG 
detector. 



For the past few years, several attempts have been made 
to use deep learning framework for EEG signals [6]. 
Roy et al. indicates 40% of the studies regarding EEG 
signals using deep learning from 2010 to 2018 use 
convolutional neural networks and 14% use recurrent 
neural networks [6]. However, all the studies mentioned 
in [6] only use deep learning for the detection and 
classification of clinical events, and use either statistical 
methods for artifact detection and removal or raw data 
without artifact handling. Inspired by the success of 
deep learning for EEG signals, in this paper we 
investigate using deep learning for artifact detection.  

III. EXPERIMENTAL DESIGN 
The data used in this study are from the Temple 
University Hospital’s EEG Artifact Corpus. The version 
of the dataset used is v1.0.0, which is derived from the 
v1.1.0 of the TUH EEG Corpus [2]. There are 310 
observations with 213 patients, and durations and 
sampling rates differ from observation to observation. 

The model is developed in python, and experiments are 
done using a machine equipped with 16 GB memory, 
AMD FX(tm)-6300 Six-Core Processor 3.5GHz, and a 
GeForce GTX 1070 8GB graphics card.  

The dataset contains 3 different configurations of EEG: 
AR (averaged reference), LE (linked ears reference), 
and AR_A configuration that is a modified version of 
the AR configuration. All the data contain standard 
measurements of channel information from the 10-20 
International System. For AR, and LE configurations, 
22 montages can be derived, and for AR_A 
configuration only 20 montages can be derived. In 
addition, only 4 patients are available for AR_A 
configuration. Since there are too few observations to 
capture unique features of AR_A compared to the other 
configurations, AR_A configuration was discarded for 
all the experiments in this paper. Hence, only 303 
observations with 209 patients are used for the 
experiments. 

In order to format all the data to have the same amount 
of information, the data, which have varying sampling 
frequencies of 250Hz, 256 Hz, 480Hz, and 500Hz, have 
been resampled to 250Hz. Also, as each observation has 

a different duration, all the signals are divided into 1-
second segments. The original observations are in 16-bit 
floating points, but as the model utilizes 32-bit precision 
floating points, all the observations are converted to 32-
bit floating points. The resulting 1-second segment, 
which will be fed into the model is a 22×250 tensor. 

Before any more processing is done, the dataset has 
been divided into the train set, the validation set, and the 
test set. The ratio among the three sets is chosen to be 
0.75:0.10:0.15 to allow a high probability of the test and 
the validation sets containing at least one example of 
each label while leaving enough examples for the 
training set. The set division is performed on the unique 
patient ID to ensure that the training and the testing are 
not performed on the same patient as the goal of this 
model is to detect artifacts on new patients. The order of 
the patient IDs has been shuffled before dividing IDs 
into the 3 sets. This split corresponds to 157 patients in 
the training set, 21 patients in the validation set, and 31 
patients in the test set. 

Each 1-second segment belongs to one of the 6 possible 
labels. The label names and the corresponding 
descriptions are shown in Table 2. Details of the labels 
and the dataset are in [2]. 

There are 6 possible labels in the dataset, but one of the 
labels, “shiv”, is represented by 0.39% of the data, this 
label is disregarded for the experiment as there is not 
enough data for the models to train. In addition, there is 
a high imbalance of data due to a large number of 
“null”. This is because the artifact content in the clinical 
EEG waves is low. To balance the number of 
observations for each label more even, “null” is 
subsampled such that only the 30th observation is kept 
for the experiment. Break down of occurrences of each 
label and the relative frequency after the removal of one 
label, and subsampling is shown in Table 1. 

After the training set is formed, all the signals are 
normalized by subtracting the mean and dividing by the 
standard deviation of the training set. The mean and the 
standard deviation used for the normalizing are -1.598, 
and 219.395, respectively. 

Table 2. EEG Wave Labels 

Label Description 
eyem Eye movements 
chew Chewing 
shiv Shivering 
elpp Electrode pop 
musc Muscle artifacts 
null No artifact 

 

Table 1. Occurrences and Relative Frequencies of Each Label 

Label Occurrences Percentage (%) 
eyem 7471 26.20 
chew 2727 9.56 
elpp 2663 9.34 
musc 4892 17.16 
null 10763 37.74 
total 28516 100.00 

 



Our model is an ensemble model that includes a 
Recurrent Neural Network (RNN), and two 
Convolutional Neural Networks (CNNs). Network 
architectures for all three networks (RNN, CNN, DCNN) 
are shown in Table 3, Table 4, and Table 5. 

All the networks in the ensemble model are trained with 
Adam optimizer [7] with the default setting. Adam 
optimizer is a method for gradient-based optimization 
which is frequently used in deep learning due to its 
computational efficiency. Each network is trained 
separately by minimizing the categorical cross-entropy 
for 5-class classification, or the categorical entropy for 
binary classification, which is a measure of the error in 
making a decision of which category the sample belongs 
to in 5 categories or 2 categories respectively. RNN and 
CNN are trained to the 100th epochs, and DCNN is 
trained to 30th epochs. The parameters for the layers in 
all the networks are chosen through experiments using 
the validation set. The ensemble model adds all the 
logits produced at the end of each networks to yield a 
set of final logits. The label with the highest logit is 
chosen to be the predicted label. 

All the networks have two versions: the first version is 
for the 5-class classification, and the second version is 

for the binary classification in which the last layer for 
all the networks is replaced with a similar layer that has 
an output shape of (None, 2). As the number of 
parameters differs for the two versions, all the networks 
are trained twice with the same settings. 

Table 3. Network Architecture for RNN 

Layer (type) Output Shape Param # 
Input_1 (InputLayer) (None, 22, 250) 0 

Lstm_1 (LSTM) (None, 50) 60200 
Dense_1 (Dense) (None, 1024) 52224 
Dense_2 (Dense) (None, 5) 5125 

 

Table 4: Network Architecture for CNN 

Layer (type) Output Shape Param # 
Input_1 (InputLayer) (None, 22, 250) 0 
conv1d_1 (Conv1D) (None, 16, 250) 1072 

batch_normalization_1 (None, 16, 250) 1000 
max_pooling1d_1 (None, 16, 125) 0 

conv1d_2 (Conv1D) (None, 32, 125) 1568 
batch_normalization_2 (None, 32, 125) 500 

max_pooling1d_2 (None, 32, 63) 0 
conv1d_3 (Conv1D) (None, 64, 63) 6208 

batch_normalization_3 (None, 64, 63) 252 
max_pooling1d_3 (None, 64, 32) 0 

conv1d_4 (Conv1D) (None, 128, 32) 24704 
batch_normalization_4 (None, 128, 32) 128 

max_pooling1d_4 (None, 128, 16) 0 
conv1d_5 (Conv1D) (None, 256, 16) 98560 

batch_normalization_5 (None, 256, 16) 64 
max_pooling1d_5 (None, 256, 8) 0 

conv1d_6 (Conv1D) (None, 512, 8) 393728 
batch_normalization_6 (None, 512, 8) 32 

flatten_1 (None, 4096) 0 
dense_1(Dense) (None, 1024) 4195328 
dense_2(Dense) (None, 5) 5125 

 

Table 5. Network Architecture for DCNN 

Layer (type) Output Shape Param # 
Input_1 (InputLayer) (None, 22, 250) 0 
conv1d_1 (Conv1D) (None, 16, 250) 1072 

batch_normalization_1 (None, 16, 250) 1000 
max_pooling1d_1 (None, 16, 125) 0 

conv1d_2 (Conv1D) (None, 32, 125) 1568 
batch_normalization_2 (None, 32, 125) 500 

max_pooling1d_2 (None, 32, 63) 0 
conv1d_3 (Conv1D) (None, 64, 63) 6208 

batch_normalization_3 (None, 64, 63) 252 
max_pooling1d_3 (None, 64, 32) 0 

conv1d_4 (Conv1D) (None, 128, 32) 24704 
batch_normalization_4 (None, 128, 32) 128 

max_pooling1d_4 (None, 128, 16) 0 
conv1d_5 (Conv1D) (None, 256, 16) 98560 

batch_normalization_5 (None, 256, 16) 64 
max_pooling1d_5 (None, 256, 8) 0 

conv1d_6 (Conv1D) (None, 512, 8) 393728 
batch_normalization_6 (None, 512, 8) 32 

max_pooling1d_6 (None, 512, 4) 0 
conv1d_7 (Conv1D) (None, 1024, 4) 1573888 

batch_normalization_7 (None, 1024, 4) 16 
max_pooling1d_7 (None, 1024, 2) 0 

conv1d_8 (Conv1D) (None, 1024, 2) 3146752 
batch_normalization_8 (None, 1024, 2) 8 
conv1d_9 (Conv1D) (None, 1024, 2) 3146752 

batch_normalization_9 (None, 1024, 2) 8 
flatten_1 (None, 2048) 0 

dense_1(Dense) (None, 1024) 2098176 
dense_2(Dense) (None, 1024) 1049600 
dense_3(Dense) (None, 5) 5125 

 

 

Figure 1. Confusion Matrix 



IV. RESULTS AND DISCUSSION 
The confusion matrix for the model that combines three 
different networks is shown in Figure 1. This model 
achieves an overall accuracy of 0.6759. The model 
performs better on “eyem” and “chew” artifacts and 
“null”. Confusion matrices of individual networks in the 
ensemble model are similar to that of the ensemble 
model, but with inferior performance. 

In order to evaluate the model’s viability as an artifact 
detector, the binary classification version of the model 
is tested. The receiver operating characteristic (ROC) 
curves for the ensemble method and all the networks are 
shown in Figure 2. Areas under the curve are computed 
for numerical comparisons. 

For the binary classification problem, the main purpose 
is to accurately detect the artifact events, regardless of 
their type. A sliding window is utilized to further 
enhance the performance. The idea is similar to the 
rationale behind using hidden Markov models as in [3]. 
Artifacts often come in bursts, the previous segment’s 
label correlates well with the new segment that follows. 
Hence, we added a sliding window along the time axis 
for the logits produced. For example, for a sliding 
window of size 2, the model would add the logits of the 
first two segments to predict the label of the first 
segment. After some experimentation, we found that 
simply adding the logits produced the best results. A 
sliding window of size 2, which corresponds to using 2 
seconds to determine the presence of artifacts, was 
chosen empirically by comparing accuracies of varying 
window sizes on the validation set. The new ROC 
curves for the highest performing window setting are 
shown in Figure 3. 

The areas under the curve of the new ROC curves are 
improved by 0.03, which indicates the sliding window 
system helps in making a more accurate decision. In 
addition, this system has a true positive rate of 0.8000 
with a false alarm rate of 0.2582 for the binary 
classification.  

The inference time for a 1-second segment is 1.785ms. 
The times are measured by computing results for 1000 
samples 10 times and taking the average. The size of the 
model is 64191 KB.  

V. CONCLUSION AND FUTURE WORK 
In this paper, we have developed a deep learning based 
machine learning model that learns to distinguish 
artifacts from the real signal and classify artifacts for 
EEG signals. The model achieves a 67.6% 5-class 
classification accuracy, and a true positive rate of 80% 
at the false positive rate of 25.8% for the binary 
classification. 

The model is light and fast to be implemented in a 
portable device such as Raspberry Pi. Evidently, the 
model contains only 65MB of parameters, and 2ms to 
perform prediction on a 1-second segment of the signal. 

Our model achieves the state of the art performance on 
detecting and classifying artifacts on the 22 channel 
EEG data with a much shorter amount of the 
computation time compared to [3], [4], and [5]. 
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Figure 3. ROC Curves with Time-Lapse 

 
Figure 2. ROC Curves for All Networks 
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