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Abstract—Sleep quality has a vital effect on good health 

and well-being throughout a life. Getting enough sleep at 

the right times can help protect mental health, physical 

health, quality of life, and safety. In this study, an 

electroencephalography (EEG)-based machine-learning 

approach is proposed to measure sleep quality. The 

advantages of our approach over standard 

Polysomnography (PSG) method are: 1) it measures sleep 

quality by recognizing three sleep categories rather than 

five sleep stages, thus higher accuracy can be expected; 2) 

three sleep categories are recognized by analyzing EEG 

signals only using two EEG electrodes, so the user 

experience is improved because he/she is attached with 

fewer sensors during sleep. Using quantitative features 

obtained from EEG signals, we developed a new automatic 

sleep-staging framework that consists of a multi-class 

support vector machine (SVM) classification based on a 

decision tree approach. We used polysomnographic data 

from PhysioBank database to train and evaluate the 

performance of the framework, where the sleep stages have 

been visually annotated. The results demonstrated that the 

proposed approach achieves high classification 

performance, which helps to measure sleep quality 

accurately. 

I. INTRODUCTION 

Sleep quality plays an essential role in an individual’s 

learning ability, physical movement, and performance 

[1]. With the rapid pace of modern life, millions of people 

suffer from sleep problems. Therefore, automated sleep 

quality measurement is of utmost interest and can help in 

evaluating the treatment progress in patients with 

common sleep disorders such as restless legs syndrome, 

insomnia, narcolepsy, and obstructive sleep apnea.  

Sleep is characterized by continuous changes in brain, 

eye, muscle, respiratory and heartbeat activity. To 

evaluate the sleep quality, traditional polysomnographic 

(PSG) records different types of physiological data 

including the electroencephalogram (EEG), 

electrooculogram (EOG), electromyogram (EMG) and 

electrocardiogram (ECG). The PSG recording then 

divides into 30 sec sleep stages, which are subsequently 

classified as wakefulness (W), rapid eye movement 

(REM), stage 1 (S1); stage 2 (S2); and deep sleep, or slow 

wave sleep (SWS = S3+S4) according to the guidelines 

of American academy of sleep medicine (AASM) in 

2007 [2]. Sleep stage scoring is the gold standard for the 

analysis of human sleep [1], [3]-[7] that helps to identify 

the sleep stages that are vital in diagnosing and treating 

sleep disorders [8]-[12].  

Sleep staging is usually conducted by specialized experts. 

This process, however, is cumbersome, error prone, time 

consuming, and delays further data processing [13]. As a 

result many methods have been proposed for automatic 

sleep staging in order to reduce the time required, effort 

spent and number of errors [13]. In automatic sleep 

staging, classifiers are trained using features associated 

with each 30 sec segment of sleep data and its 

corresponding stage that is manually annotated by sleep 

specialists or neurologists. After training, the classifiers 

automatically determine the sleep stage corresponding to 

each segment.  

The traditional PSG approach uses several sensors to 

measure EEG, EOG, EMG and ECG signals [14]. This 

can make users feel uncomfortable during sleep since a 

lot of sensors are attached on their body and scalp. On the 

other hand, the EEG signals are able to provide 

information about brain activities based on electrical 

recordings taken on the scalp of a subject. The EEG 

signals at different frequency sub-bands of beta, alpha, 

theta, and delta, show different characteristics during 

different sleep stages. Thus, EEG signals are the most 

important signals in sleep stage classification for both 

manual and automatic classification [1]. Therefore to 

improve the user experience, automatic sleep staging 

based on measuring only EEG signals has been of utmost 

interest among the sleep research community during the 

last decade [1],[3]-[6]. 

Many different machine learning-based methods for 

automatic sleep stage classification (ASSC) have been 

proposed in the past. Approximately 31% of the ASSC 

methods use classification schemes that are based on 

support vector machine (SVM) classifiers, 22% based on 

artificial neural networks (ANN) classifiers, 11% based 

on linear discriminant analysis (LDA), 10% based on K-

nearest neighbor (KNN), 5% based on decision trees 

(DT) and the remaining 21% based on other types such 

as Naive Bayes (NB), Hidden Markov Model (HMM), 

fuzzy classification, and combined classification [1].  

Among different sleep datasets, the publicly available 

dataset “Sleep-EDF Database [Expanded]” from 

Physionet website [14], [18] has been widely used in the 



literature for training and evaluating the proposed 

automatic sleep staging methods. Here we briefly 

compare the performance of some of the most popular 

procedures based on “Sleep-EDF Database [Expanded]” 

dataset with highest classification performance among 

the available literature. We must note that comparison 

with the studies using other sleep databases and PSG 

signals is very difficult and is not considered in this study. 

Zhu et al. used multiclass SVM classifier to classify the 

six sleep stages of W, S1, S2, S3, S4, and REM, which 

achieved 87.5% classification accuracy [3]. Liu et al. [4] 

performed sleep stage classification based on ANN 

classifier. They achieved an optimal classification 

accuracy of 89.5% to classify W, S1 + REM, S2, and 

SWS. Sanders et al. [5] used LDA classifier for sleep 

stage classification. Their proposed method correctly 

classified the five stages of W, S1, S2, SWS, and REM 

with an average accuracy of 75%. Phan et al. [6] used 

KNN to develop an ASSC system to classify the four 

sleep stages of W, S1 + REM, S2, and SWS. The 

classifier provided 94.49% accuracy. Aboalayon et al. [1] 

compared the performance of DT, SVM, ANN, and KNN 

to classify six sleep stages of W, S1, S2, S3, S4, and 

REM. DT classifier obtained the best overall 

classification accuracy with an average of 93.13%. In 

terms of classification accuracy, the DT was followed by 

the SVM (92.37%), ANN (91.70%), and KNN (89.38%).  

In order to reliably estimate sleep disorders, it is essential 

to precisely estimate sleep quality parameters [17]-[20]. 

Three main parameters can be calculated to measure 

sleep quality: 1) sleep latency, 2) sleep efficiency, and 3) 

percentage of deep sleep [20]. Sleep latency is the time 

that it takes to finish the transition from wakefulness to 

the first sleep stage. Sleep efficiency is the ratio of time 

spent asleep to the time spent in bed. Percentage of deep 

sleep is the ratio of deep sleep to the all sleep stages. In 

order to calculate these parameters, only three sleep 

categories need to be distinguished: wakefulness, light 

sleep + REM (S1, S2, REM), and deep sleep (S3, S4). 

Consequently, the scope of measuring sleep quality 

involves determining how to recognize these three sleep 

categories. Furthermore, the definition of sleep stages 

and the sleep literature show that EEG signals are similar 

in S1 and REM sleep [21]. Additionally, high variability 

in the EEG signals between and within subjects has been 

found, especially in stages S1 and REM sleep [22], [23]. 

Therefore, we attempted to classify the three sleep 

categories based on the EEG signals alone. We used an 

automatic sleep staging framework that consists of a 

multi-class SVM classification based on a decision tree 

approach. We first trained the SVM classifier by using 

polysomnographic data of first night of 8/67 healthy 

subjects from PhysioBank database with annotated sleep 

stages [16]. Then we evaluated the performance of the 

classifier using the remaining 110 data (nights) from 67 

subjects. The rest of the paper is organized as follow. 

Section 2 describes the dataset and the method. The 

classification results are discussed in Section 3. 

Conclusions are given in Section 4. 

II. METHOD 

A. Subjects 

In this study we used sleep data from SC Sleep-EDF 

Database [Expanded] that is freely available through 

Physionet for training and testing purposes [16]. We 

selected EEG signals recorded from 67 healthy subjects 

(female (n=34, 50.74%), male (n=33, 49.25%), mean age 

of 57.13years (age range: 25-101 years with the standard 

deviation of 23.03years)) without any medication for 24 

hours sampled at 100 Hz. For each subject the EEG data 

were recorded for two nights. However, we considered 

one-night data for 13 of the subjects, since the data from 

the other night were noisy due to the poor electrode 

connections in most of the recording time and could not 

be considered in the study. Also 3 of the subjects had just 

one-night data. Thus the total number of data is 118. 

Sleep stages have been scored manually according to 

Rechtschaffen & Kales (R & K) criteria [24] based on 30 

sec segments of recordings. We selected Fpz-Cz and Pz-

Oz EEG electrodes in our evaluations. 

B. Data Pre-Processing  

EEG signals are typically contaminated by a number of 

artifacts that may be caused by eye movement, eye 

blinks, electrode movement, muscle activity, movements 

of the head, sweating, breathing, heartbeat, electrical line 

noise, etc. One approach to extract and cancel artifactual 

signals is independent component analysis (ICA). This 

approach is based on the hypothesis that an artifact is 

statistically independent from the rest of the signals [25].  

However, ICA performance depends on the length of the 

data because the larger the data processed, the higher the 

probability that the effective number of sources will 

overcome the number of EEG electrodes and therefore 

that we are dealing with overcomplete ICA. In this case, 

ICA will not be able to separate the artifact from the rest. 

Moreover, often artifacts involve a very narrow 

frequency range and exploiting these features in the 

frequency domain would help, but ICA operates in time 

domain. This means that, even when the separation is 

good, some useful EEG information content can be seen 

in the component accounting for the artifact, thus the 

cancellation would cause information loss. One way to 

overcome this problem is wavelet enhanced ICA method 

(wICA) [26] that applies a wavelet thresholding not to the 

observed raw EEG but to the de-mixed independent 

components as an intermediate step. It allows recovering 

the neural activity present in “artificial” components. In 

this study in order to minimize the effect of the artifact 

we first bandpass-filtered each sleep segment between 



0.5 and 50 Hz. EEG artifacts were then removed using 

wICA algorithm MATLAB code [27]. 

C. Feature Extraction 

As EEG signals are dynamic, sometimes transient 

(spikes/bursts), and mostly nonstationary for their 

practical analysis, we not only need to know their 

frequency components but also the times at which they 

occur. Time-frequency analysis is especially suitable for 

addressing such issues [28]. We usually need more time 

accuracy in locating transient waves (high frequency), 

and for slow waves, we may be more interested in 

frequency resolution. Such an analysis can be performed 

using wavelet transform (WT). A Wavelet Packet Tree 

(WPT) of depth 7 (7 levels) was designed for this 

purpose. In this study Daubechies wavelet of order 2 

(db2) was applied to 30 sec segments of filtered and de-

artifacted EEG signal [29]. The frequency ranges of the 

EEG signal were broken down into Delta (below 3.5 Hz), 

Theta (4-7 Hz), Alpha (8-13 Hz), and Beta (14-30 Hz) 

bands [30]. In the sleep EEG, because of presence of 

sleep spindles, there is another frequency band, that is, 

spindle frequency band. Out of the family of subbands, 

those containing frequency information of the following 

6 bands were manually selected (Figure 1). 

1. Delta: {0.39 - 3.13 Hz}, Wavelet coefficients = 

[C38, C30, C31, C32] = B1 

2. Theta: {3.13 - 8.46 Hz}, Wavelet coefficients = 

[C33, C34, C22, C23, C35] =B2 

3. Alpha: {8.46 - 10.93 Hz}, Wavelet coefficients = 

[C36, C25] = B3 

4. Spindle: {10.93 - 15.63 Hz}, Wavelet coefficients = 

[C26, C27, C28] = B4 

5. Beta1: {15.63 - 21.88 Hz}, Wavelet coefficients = 

[C16, C17] = B5 

6. Beta2: {21.88 - 37.50 Hz}, Wavelet coefficients = 

[C18, C5] = B6 

The following 32 statistical features were used to 

represent the time–frequency distribution of EEG signal  

 

Figure 1. WPT and selected subbands. 

for each electrode, therefore the total number of features 

are 2×32=64, 

 Mean quadratic value or Energy (E1, E2, …, E6) of 

wavelet packet (WP) coefficients for each of the 6 

bands (features 1-6) 

 Total Energy (E7) (feature 7) 

 Mean of the absolute values of the coefficients in 

each sub-band (features 8-13) 

 Standard deviation of the coefficients in each sub-

band (features 14-19) 

 Ratio of different mean absolute values in different 

sub-bands (features 20-24) 

 Shanon entropy of the vector B=[B1, B2, B3, B4, 

B5, B6] (feature 25) 

 Permutation entropy [[31]]. (feature 26) 

 Mean of each segment (feature 27) 

 Maximum of each segment (feature 28) 

 Minimum of each segment (feature 29) 

 Median of each segment  (feature 30) 

 Standard deviation of each segment (feature 31) 

 Mean of absolute differences (MAD) of each 

segment (feature 32) 

𝑀𝐴𝐷 =
1

𝑁
∑ |𝑥(𝑘) − 𝑥(𝑘 − 1)|𝑘                            (1) 

Features 1–13 show the frequency distribution of the 

signal, features 14–24 display the amount of 

transformation in the distribution of the frequency. 

Feature 25, Shannon entropy, is used to describe the 

energy distribution of the wavelet coefficients. Since 

Shannon entropy yields high values in wakefulness and 

REM sleep stages, and low values in SWS stages, it can 

also be used in sleep EEG signal processing [32]. Feature 

26, permutation entropy, is used to get a quantitative 

complexity measure for a dynamical time series. Features 

27-32 mainly consist of statistical measures applied 

directly to the time series.   

D. Feature Pre-Processing and Dimension Reduction   

After extracting candidate features, the second step in the 

machine learning process is feature reduction, or feature 

selection, which is critical to the performance of the 

corresponding classifier. We wish to identify only a set 

of Nr most salient features from the extensive list of 

candidate features which are relevant to distinguishing 

between the three sleep categories. The effective feature 

selection algorithm minimum redundancy maximum 

relevance (MRmR) [33] was used to select a set of most 

discriminating features between the three classes. MRmR 

algorithm tends to select a subset of features having the 

most correlation with a class (relevance) and the least 

correlation between themselves (redundancy). 

In order to avoid choosing features that are dominant in 

just a few patterns, a stratified 10-fold cross validation 

procedure was used to select the best Nr features, where 

the folds were selected so that each fold contains 

approximately the same number of segments for each 



category. The 10-fold cross validation is an iterative 

process, where in each iteration, a single fold is retained 

as the validation data for testing and the remaining folds 

are used as training data. In the proposed feature selection 

scheme, for each iteration, a list of the best kNr, k > 1 

features is determined using MRmR method. For this 

study the value of k is chosen to be 2. After all iterations 

are completed, the Nr features with the highest number of 

repetitions (probability of appearance) among the 

available lists were selected as the final set of selected 

features. It is desirable to use as small a number as 

possible so as to avoid over-fitting.  

E. Dendrogram Multi-Class SVM   

In this study, we used a decision-tree-based support 

vector machine approach named Dendrogram-SVM 

(DSVM) for sleep categories classification [7]. The 

kernel function is Gaussian Radial basis function and the 

optimization technique is sequential minimal 

optimization [34] using the Statistics and Machine 

Learning Toolbox in MATLAB R2016. The rationale 

here is that associating decision tree architecture with 

binary SVMs combines the advantages of the efficient 

computation of decision trees and the high classification 

accuracy of SVMs. 

F. Training the Classifier   

To train the classifier, we selected 8-night recorded EEG 

data from first night of 8 different subjects in the 

PhysioBank dataset. We then used 800 samples of each 

category from these 8 data for training to have the same 

number of samples for each category. Therefore, the total 

number of training samples was 3×800=2400. We then 

applied the MRmR procedure with 10-fold cross 

validation to the features from these 8 subjects to find the 

most discriminating features. Then we tested the trained 

classifier for the remaining 110 data (nights) from 67 

subjects. We used bootstrap approach for training to find 

the best 8 training data that could give us the best test 

performance for the remaining 110 data. The number 8 

was the least number of subjects with a best test 

performance (less over-fitting). In this study, Nr = 15 

features were selected. This value was determined on the 

basis that it is the lowest value which gave adequate 

performance. This number of features is much lower than 

2400 training samples to prevent over-fitting (the feature 

to training sample ratio is 15/2400×100=0.625%)  

III. RESULTS 

A. Dendrogram Generation 

The hierarchical cluster analysis step yielded the 

dendrogram shown in Figure 2. At the top of the tree (i.e. 

the root node), the first binary decision occurs for awake 

versus sleep. The Awake class is thus a terminal node 

and, when training SVM1, is considered to be a negative 

class, while the remaining merged two classes are  

 

Figure 2. Dendrogram shows the multiple SVM classification 

generated for the three classes (awake, light sleep + REM, and 

deep sleep).   

positive. Similarly, the second binary classifier in the tree 

(SVM2) is trained considering elements of deep sleep as 

negative and elements of light sleep + REM as positive. 

In this approach, the hierarchical cluster tree is created 

using the smallest distance between objects in the two 

clusters, where pairwise distance between pairs of 

observations is correlation, which is one minus the 

sample correlation between them. 

B. Classification Performance  

The set of 15 most relevant features selected by the 

MRmR procedure is shown in Table 1, sorted in terms of 

the optimized MRmR value. These selected features were 

then used for the two binary classifications in Figure 2. 

The classification performance of the proposed 

methodology for three sleep categories of awake, light 

sleep + REM, and deep sleep using the remaining 110 

nights of 67 subjects are shown in Table 2. From Table 2 

the classifier is capable of discriminating the tree 

categories with the accuracy of 91.4%. This confirms that 

the over-fitting has not occurred. Comparing with the 

preceding works using the same database and EEG 
signals[1], [3]-[6], the performance of the proposed 

procedure obtained high accuracy rate. The slightly 

higher performance in studies [6] and [1] can be due to 

the use of a portion of sleep stages of same subjects for 

training and another portion for testing in the form of 

leave one out or k-fold cross-validation and 

bootstrapping approaches in comparison to our case 

where the test data are from 110 nights that are not used 

for training. 

IV. CONCLUSIONS 

In this paper, we developed a machine-learning algorithm 

based on Dendrogram Multi-Class SVM to detect the 

three sleep categories of light sleep+REM, deep sleep, 

and awake. Considering that standard PSG system may 

make users feel uncomfortable, our approach is 

specifically designed to recognize three sleep categories 

from two EEG electrodes only. We trained the machine-

learning algorithm using only 8-night recorded EEG data 

from first night of 8 subjects available in Physiobank 

SVM1 

SVM2 

Awake Sleep 

Light Sleep + REM Deep Sleep 



sleep database. We then evaluated the algorithm using 

the remaining 110 data from 67 subjects. The results 

demonstrated that our approach can achieve high 

accuracy though only two EEG electrodes are used. The 

three parameters— sleep latency, sleep efficiency and 

percentage of deep sleep —can then be calculated to 

automatically monitor users’ sleep quality at night. This 

can help in diagnosing sleep disorders and evaluating the 

treatment progress.   

Table 1. The Nr = 15 discriminating features 

Feature # Feature MRmR 

1 Standard deviation of each 

segment (Pz-Oz) 

0.9245 

2 Standard deviation of sub band S6 

(Pz-Oz) 

0.9238 

3 Mean quadratic value or Energy 

in sub band S6 ( Pz-Oz) 

0.9220 

4 Mean quadratic value or Energy 

in sub band S1 ( Pz-Oz) 

0.8989 

5 Max of the segment ( Pz-Oz) 0.8906 

6  Mean absolute value of sub band 

S5 ( Pz-Oz) 

0.8895 

7 Sum of absolute differences of 

each segment (Pz-Oz) 

0.8867 

8 Mean absolute value of sub band 

S4 ( Pz-Oz) 

0.8841 

9 Mean absolute value of sub band 

S1 ( Pz-Oz) 

0.8816 

10 Mean quadratic value or Energy 

in sub band S2 ( Pz-Oz) 

0.8199 

11 Permutation entropy ( Fpz-Cz) 0.7602 

12 Permutation entropy ( Pz-Oz) 0.7446 

13 The ratio of mean absolute value 

of sub band S3 to sub band S4      

(Pz-Oz) 

0.7013 

14 The ratio of mean absolute value 

of sub band S5 to sub band S6      

(Fpz-Cz) 

0.6752 

15 Mean absolute value of sub band 

S6 ( Fpz-Cz) 

0.5428 

 

Table 2. SVM classification performance using 91285 light 

sleep + REM, 10022 deep sleep, and 133246 awake segments 

for 110 test Data 

Class LS + 

REM 

DS AW SE SP TA 

LS + 

REM 

76914 6729 7642 84.3 96.1  

91.4 

DS 991 8960 71 89.4 96.9 

AW 4548 178 128520 96.4 92.4 

SE: Sensitivity, SP: Specificity, TA: Total accuracy, AW: 

Awake, DS: Deep sleep, LS+REM: Light sleep + REM.   
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