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Fetal heart sounds have always been one of the main parameters to focus on in terms of monitoring the 

well-being of a fetus. In the past, intermittent auscultation was the main technique in midwifery and 

obstetrics, and Pinard Horn the main equipment of the clinicians. The accuracy of the method was highly 

dependent on the skills and experiences of the examiner [1]. This method was later replaced by the 

continuous Electronic Fetal Monitoring (EFM), also known as Cardiotocography (CTG), using Doppler 

Effect for monitoring of the fetal heart rate (fHR). By using the computer technology, the performance of 

the method should be higher than intermittent auscultation. However, many studies claim that this 

presumption is questionable [2, 3]. Moreover, the drawback of Doppler-based EFM is that it does not allow 

to monitor fetal heart rate variability. Therefore, some short time changes may occur unnoticed [4].  

In the last few years, the fetal heart sounds monitoring has been reborn in the fetal phonocardiogram 

(fPCG). In comparison with intermittent auscultation, this method allows digitalization of the heart sounds 

and thus more objective computer based evaluation and analysis [5]. Moreover, in contrast to the CTG, it 

allows to assess heart rate variability and detection of some additional features obtained in the fPCG signal 

(such as subaudible sounds, murmurs, etc. [6]). Thus, this method has great potential to improve the quality 

of fetal monitoring. However, it suffers from the noise that is being sensed with the desired signal. 

Traditional denoising methods using linear filters for the fPCG noise removal face certain limitations due 

to the non-stationarity of the fPCG signals. Therefore, to improve the diagnostic capabilities of this method, 

a lot of recent studies focus on fPCG signal denoising using advanced signal processing methods [7 – 10]. 

In this presentation, we introduce the discrete wavelet transform for denoising the abdominal fPCG 

recordings. Many authors have proposed different approaches and settings of the wavelet-based fPCG 

filtration system [10 – 14]. There are three main parameters that need to be selected carefully, namely 

wavelet base, thresholding method, and level of decomposition. Most of the published works [12 – 15] 

present heuristic approaches in selecting these parameters. Experimental part of this presentation introduces 

an objective optimization technique that can help in assessing the validity of the parameter for given 

purpose.  

The experiments were carried out on both synthetic and real abdominal PCG data. The synthetic data were 

used to perform the optimization and evaluation of the denoising system. First phase consisted of 

optimization of the system parameters: wavelet family and the level of decomposition. We tested the 

members of orthogonal and biorthogonal wavelet families (sym3 – sym8, db1 – db10, coif1 – coif5, bior 

1.1, bior 1.3) for 6 levels of decomposition. In the second phase, fixed threshold configuration (designed 

within this research) is compared with the conventionally used thresholding methods included in Matlab 

Wavelet Toolbox, namely Rigorous SURE, Heuristic SURE, and Minimax.  

The results showed that our thresholding method, which minimizes the detail coefficients at level 1, 5, and 

6, outperforms the rest of the tested thresholding techniques. Moreover, in contrast to Chourasia in [11], 

the best results were obtained for the decomposition on level 6 in case of the most of the tested wavelet 

families; the most suitable wavelet families are Daubechiens (Db10) and Biorthogonal (Bior2.8) wavelets. 

For the final verification of the results obtained using synthetic data, we used recordings from Fetal PCG 
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Database (fpcgdb) consisting of recordings from 16 patients from different stages of pregnancy [16, 17]. 

The system successfully suppressed most of the noise and enabled the fetal heart rate detection. 
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Abstract
• In the last few years, the fetal heart sounds 

monitoring has been reborn in the fetal 
phonocardiogram (fPCG). 

• This method allows digitalization of the heart sounds 
and thus more objective computer based evaluation 
and analysis of fetal heart rate variability and 
detection of some additional features obtained in the 
fPCG signal (subaudible sounds, murmurs, etc.). 

• However, it suffers from the noise that is being 
sensed with the desired signal. This presentation 
introduces the discrete wavelet transform for 
denoising the abdominal fPCG recordings to 
improve the diagnostic capabilities of this method.

• There are three main parameters that need to be 
selected carefully: the wavelet base, thresholding 
method, and level of decomposition. Most of the 
published presents heuristic approaches in 
selecting these parameters. 

• Experimental part of this presentation introduces an 
objective optimization technique that can help in 
assessing the validity of the parameter for given 
purpose. 

Dataset
• Simulated Fetal Phonocardiograms Database 

(simfpcgdb) is available online for researchers to 
test their algorithms. However, these data are very 
simple and the reference signals are not available.

• We used our own simulated PCG data, since mPCG, 
aPCGs, and ideal PCG signals are available for 
optimization purposes.

• Comparison of the data used for the experiments 
with fPCG signal from simfpcgdb:

• For the final verification of the results obtained 
using synthetic data, we used recordings from Fetal 
PCG Database (fpcgdb) which consists of records 
from 16 patients from different stages of pregnancy. 

Experiments
• The experiments were carried out on both synthetic 

and real abdominal PCG data. The synthetic data 
were used to perform the optimization and 
evaluation of the denoising system. 

• First phase consisted of optimization of the system 
parameters: wavelet family and the level of 
decomposition. 

• We tested the members of orthogonal and 
biorthogonal wavelet families (sym3 – sym8, db1 –
db10, coif1 – coif5, bior 1.1 – bior 1.8) for 6 levels of 
decomposition. 

• Results for Coiflet family

• Results for Symlet Family

• Results for Biorthogonal wavelets

• Results for Daubechiens wavelet family:

• In the second phase, fixed threshold configuration 
(designed within this research) is compared with the 
conventionally used thresholding methods included 
in Matlab Wavelet Toolbox, namely Rigorous SURE, 
Heuristic SURE, and Minimax.

• The estimated fPCG signals were assessed by three 
objective parameters: Signal to Noise ratio (SNR), 
Percentage Root-Mean-Square Difference (PRD), and 
Root Mean Square Error (RMSE). This way, we 
determined the best wavelet family configuration for 
the denoising system with our fixed threshold with 
soft thresholding rule.

• Based on the results we recommend to use the 
decomposition at 6th level. In terms of wavelet 
families, the best results were obtained for Sym8, 
db10, coif5, and bior2.8.

• Comparison of thresholding methods:

• Example of input aPCG signal, estimated fPCG
signal using db10 at 6th level of decomposition, and 
the ideal (reference) fPCG signal:

• Finally, we tested the proposed wavelet denoising 
system on the real data from database fpcgdb

• Examples of real aPCG signal from fpcgdb, and 
denoised signals by means of wavelet sysem using 
db10 and bior2.8 wavelets, respectively:

Summary
• In this paper, we searched for optimal configuration 

of the wavelet based denoising system. Based on 
our experimental results, we conclude that the signal 
should be decomposed on 6 levels using soft 
thresholding adjusted for fPCG denoising purposes, 
i.e. minimizing the detail coefficients at level 1, 5, and 
6. Moreover, the most suitable wavelets appear to be 
Db10 and Bior2.8.

• The denoising system needs to be tested on the 
larger dataset of both synthetic and real data. 

• The tests on the real data revealed that the algorithm 
is still not able to suppress all of the interference 
obtained in the abdominal PCG signal. 

• Performance of the wavelet based denoising 
algorithm could be increased by combining it with 
other noise cancelling system.
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Wavelet Family
Thresholding Methods Assessment

Thresholding 
method

RMSE
( - )

PRD
(%)

Sym8

Heuristic SURE 0.0604 40.3793
Rigorous SURE 0.0604 40.3770
Minimax 0.0536 31.8537
Our Thresholding 
Method

0.0280 8.6778

Db10

Heuristic SURE 0.0586 38.0758
Rigorous SURE 0.0586 38.0764
Minimax 0.0573 36.3373
Our Thresholding 
Method

0.0279 8.6397

Coif5

Heuristic SURE 0.0598 39.6386
Rigorous SURE 0.0598 39.6394
Minimax 0.0528 30.8616
Our Thresholding 
Method

0.0280 8.6548

Bior2.8

Heuristic SURE 0.0591 38.7304
Rigorous SURE 0.0592 38.7403
Minimax 0.0507 28.4492
Our Thresholding 
Method

0.0286 9.0687

Wavelet
Family Level

Wavelet family member
Coif1 Coif2 Coif3 Coif4 Coif5

Coiflet

lev1 0.0722 0.0724 0.0725 0.0725 0.0726
lev2 0.0708 0.0710 0.0710 0.0711 0.0711
lev3 0.0708 0.0710 0.0710 0.0711 0.0711
lev4 0.0708 0.0710 0.0710 0.0711 0.0711
lev5 0.0417 0.0395 0.0391 0.0391 0.0391
lev6 0.0301 0.0285 0.0281 0.0280 0.0280

WF Level
Wavelet family member

Bior1.
1

Bior1.
3

Bior2.
2

Bior2.
4

Bior2.
6

Bior2.
8

Bior

lev1 0.0718 0.0722 0.0722 0.0723 0.0725 0.0725
lev2 0.0701 0.0708 0.0708 0.0709 0.0710 0.0710
lev3 0.0701 0.0708 0.0708 0.0709 0.0710 0.0710
lev4 0.0701 0.0708 0.0708 0.0709 0.0710 0.0710
lev5 0.0473 0.0419 0.0422 0.0406 0.0390 0.0391
lev6 0.0364 0.0303 0.0312 0.0296 0.0281 0.0280

Wavel
et

Family
Level

Wavelet family member

Sym3 Sym4 Sym5 Sym6 Sym7 Sym8

Sym

lev1 0.0723 0.0724 0.0725 0.0725 0.0725 0.0725
lev2 0.0709 0.0710 0.0710 0.0710 0.0710 0.0710
lev3 0.0709 0.0710 0.0710 0.0710 0.0710 0.0710
lev4 0.0709 0.0710 0.0710 0.0710 0.0710 0.0710
lev5 0.0403 0.0396 0.0392 0.0391 0.0390 0.0391
lev6 0.0290 0.0285 0.0283 0.0281 0.0281 0.0280

WF Level
Wavelet family member

Db2 Db4 Db6 Db8 Db9 Db10

Db

lev1 0.0722 0.0724 0.0725 0.0725 0.0726 0.0726
lev2 0.0708 0.0710 0.0710 0.0710 0.0711 0.0711
lev3 0.0708 0.0710 0.0710 0.0710 0.0711 0.0711
lev4 0.0708 0.0710 0.0710 0.0710 0.0711 0.0711
lev5 0.0419 0.0395 0.0390 0.0390 0.0390 0.0390
lev6 0.0303 0.0285 0.0281 0.0280 0.0279 0.0279
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