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Telemedicine and other remote early intervention techniques play a vital role to improve the cardiac patient
survival rate and decrease their hospitalized rate. Phonocardiography (PCG) is a widely used diagnostic
tool to quickly identify the heart condition. It provides supplement diagnostic information to
Electrocardiogram (ECG) as it can detect the structural defects of the heart that ECG cannot identify.
Therefore, continuous PCG monitoring is of great interests for remote patient monitoring [1] [2]. However,
24 hours online monitoring generates a large amount of data to be transferred and stored at healthcare
facilities. Moreover, end-to-end encryption is also required to share the data without compromising privacy
or security. So, the data compression and encryption are necessary for the continuous monitoring of the
PCG signal. But, very little research has been done on the compression of the PCG signal and the
compression of the ECG signal is widely studied. This paper describes a PCG signal compression and
encryption method which is suitable for the wireless cardiac patient monitoring applications.

The aim of an efficient data compression process is to remove all the redundant information from the signal
without losing any data containing pathological information. We can achieve the compression by reducing
the number of samples required to store and to transfer the PCG signal, thus it will reduce the memory
space and the bandwidth requirements. Popular compression techniques include Fast Fourier Transform
(FFT), Discrete Cosine Transform (DCT), Discrete Sine Transform (DST) and Discrete Wavelet Transform
(DWT). Among these methods, DWT performs better for the compression of the non-stationary signal like
PCG due to its multi-resolution analysis feature [3] [4]. This paper presents an intelligent algorithm to
compress the PCG signal using DWT. First, we decomposed the original signal into multi-resolution sub-
bands. Then we used an adaptive thresholding method based on the energy compaction property of the
wavelet coefficients of each sub-band to compress the signal without distortion [5]-[10]. The compression
algorithm is validated by testing on the large sets of normal and abnormal PCG signals available in the
University of Michigan heart sound and murmur library [11]. We evaluated the performance of the
algorithm by using compression ratio (CR), percentage of compression (PC), and percent root mean square
difference (PRD). The objective of any compression technique is to achieve maximum CR and PC by
preserving the features of signal with minimum PRD.

The selection of the best mother wavelet is crucial for the reconstruction of the compressed signal. To
evaluate the performance of the best mother wavelet, we carried an extensive simulation among 20 wavelets
from Daubechies family, 5 wavelets from Coiflets family and 15 wavelets from both Biorthogonal and
Reverse-Biorthogonal families (total 55 orthogonal wavelets). Among all of these wavelets db18 wavelet
is chosen from Daubechies family as it outperformed all the other wavelets by giving the best compression
performance and by maintaining the fidelity of the compressed signal with respect to the original signal
[12]. All the PCG signals in the database are compressed at about 93.67% with an average CR of 15.85 and
an average PRD of < 0.50%. The performance of this method is compared with 21 ECG compression
techniques presented in the review paper [13]. The CR of those compression methods ranges from 2.0 to
23.1 and a range of the PRD from 0.61% to 28% has been reported.

Furthermore, to ensure the secure transmission of the signal, we developed an encryption procedure by
using run-length encoding (RLE) and run-length decoding (RLD), so that only the receiver can decode the
signal [14]. The qualitative design and the analysis of this compression technique could also be used on
other remote patient monitoring data management.
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Figure 6: @) Original PCG signal (Record-12) b) Compressed PCG Signal (Record-12).
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