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Abstract—This paper considers the problem of classifying hu-
man hand gestures by using electromyography (EMG) signals
that are usually corrupted with noise. Noisy EMG signals
result in significant degradation of classification performance
and to enhance the performance, a Gaussian Smoothing Filter
(GSF) is employed to remove the noise in the sensed EMG
signals. The filtered signals, along with various classification
schemes, are used to classify several hand gestures. The
features of the GSF include: high filtering efficiency, simple
implementation, and equal support in frequency and time
domains, endowing the GSF with the ability to filter out
the noise while keeping the high frequency components of
the signal. The use of GSF produces smoothed EMG signals
that not only enhances the classification accuracy but also
reduces the computational time required to develop and test
the classifiers. Experiments are conducted on EMG signals,
captured from a MYO band, using multiple classification
techniques and a significant improvement is observed in the
classification performance when using the GSF to filter out
the noise in the EMG signals. The classification performance
for the EMG signals, for both unfiltered and filtered cases,
is compared and the use of GSF is shown to yield significant
performance enhancement. Moreover, a significant reduction
in the computational time is reported when employing the
GSF-based classification, demonstrating the advantages of the
GSF for classifying EMG signals. Finally, a comparison is
performed for classifying the EMG signals smoothed using a
Median Filter (MF) versus the GSF and the superiority of
the GSF is shown.

I. INTRODUCTION

The Electromyography (EMG) is an approach for recording
the electric response of the muscles by measuring the
electric potential produced by the muscle cells when they
are activated and engaged in a certain action [1]. The
EMG signals are widely used in diverse applications, e.g.
neuromuscular monitoring in the myasthenia gravis patients
[2], computer interface for limb disabled [3], nerve function
assessment using needle EMG [4], robot movement control
[5], to name a few. Many current applications of EMG
study the statistical features of the sensed signals and de-
velop data-driven models that are suited to the application
needs. One of these data-driven models is the EMG signals
classification which is considered one of the attractive
elements in multiple EMG signals-based applications [6].

One of the earliest efforts to classify EMG signals
was reported by Graupe and Cline who employed the
autoregressive-moving-average (ARMA) in building a
parametric classification approach for interpreting the EMG
time series signal [7]. Using various time-frequency rep-
resentations, promising classification performance was re-
ported by employing Fourier and wavelet transforms [8].

In [9], a real-time EMG signals-based approach was de-
veloped, which produced good results, for simultaneously
detecting multiple hand motions and learning to adapt to
individual human operator with an application to pros-
thetic hand. Hidden Markov and autoregressive models
were combined for developing efficient models of human
hand gesture using the sensed EMG signals and promising
results were reported [10]. In [11], Support Vector Machine
was efficiently employed in real-time classification of EMG
signals for distinguishing human hand gestures while the
arm joint angles were estimated by developing simple
linear models relating the EMG signals to the joint angles.
Other techniques were suggested for efficiently classifying
EMG signals like k-Nearest Neighbor (KNN) [12], Linear
Discriminant Analysis (LDA) [13], Deep Neural Network
(DNN) [14], among others.

This paper suggests improving the classification perfor-
mance of the EMG signals when using some of the
aforementioned classification schemes. The performance
of the classification process may be degraded when using
the EMG signals corrupted with a significant amount of
noise. To overcome this limitation, the EMG signals clas-
sification is initaited by employing a Gaussian Smoothing
Filter (GSF) to filter out the noise encountered in EMG
signals. The main features of the GSF are its simplicity
in implementation, its equal support in both frequency
and time domains, and excellent noise suppression perfor-
mance. These features provide a significant impetus for
the applicability of the GSF to the EMG classification
since the noisy EMG signals have a degrading effect on
the classification performance. Moreover, employing the
GSF is shown to reduce the computational cost required
for training and testing the classification models.

The rest of the paper is organized as follows. Section
2 describes the classification problem for EMG signals
and the noise encountered in EMG signals. Section 3
explains the GSF and several classification techniques,
namely Support Vector Machine (SVM), k-Nearest Neigh-
bor (k-NN), Naive Bayes Classifier (NBC), and Linear
Discriminant Analysis (LDA) used for EMG signals clas-
sification. Section 4 details the experimental validation and
the enhancement in classification when using the GSF in
smoothing the EMG signals. Finally, Section 5 contains
concluding remarks and recommendations for future work.

II. PROBLEM DESCRIPTION

Consider the sensed signal of a human hand for two
gestures as shown in Figure 1: (a) with the hand closed



Figure 1. MYO band mounted on an arm with: (a) hand closed and (b)
hand opened.

and (b) with the hand opened. The corresponding sensed
signal from one of the MYO band sensors corresponding
to phases in Figure 1 (a) and (b) are shown in Figure 2
(a) and (b), respectively. One can formulate the problem
of classifying the two phases (phase`, ` = 1, . . . , L, where
L denotes the total number of phases and L = 2 for the
the case of two phases) shown in Figure 1 (a) and (b) as
below

yphase`(t) =

{
1, if x(t) ∈ phase`
0, otherwise,

(1)

where yphase`(t) ∈ B , {0, 1} is the binary desired classi-
fier output of the `th phase at time instance t and x ∈ R8 is
the corresponding EMG signal vector. 1 The main objective
of the classification process is to develop models that can
realize the nonlinear mapping given in (1) as accurately as
possible. However, it is obvious from Figure 2 (a) and (b)
that the sensed EMG signals are corrupted with noise that
can degrade the performance of the classification process.
The noise can arise due to sensors, communication, human
body, or their combinations. Thus, the features of the noise
are unknown and the main objective of this paper is to
enhance the classification process by filtering out noise
from the sensed EMG signals by employing the GSF before
performing the classification step.

III. GSF-BASED ENHANCED CLASSIFICATION
PROCESS

To outline the suggested GSF-based enhanced classification
approach, we begin with the review of several related
topics, including the concept of GSF and various existing
classification techniques. Then, the GSF and classification
techniques are used to enhance the process of distinguish-
ing hand gestures using the EMG signals.

A. Gaussian Smoothing Filter (GSF)

The GSF can be characterized by the following impulse
response [15]

g(x(t)) =
e

−x(t)2

2σ2

√
2πσ2

, (2)

where x(t) is the signal to be smoothed and σ is the
standard deviation of the GSF. Since, (2) represents the
impulse response of the filter under consideration, one can

1Note that we have x ∈ R8 since the MYO band considered throughout
the article is composed of 8 sensors. Alternatively, for cases where we
consider q EMG sensors in the device, then x would be a q-dimensional
vector, i.e. x ∈ Rq .

Figure 2. The EMG signals of Figure 1: (a) hand closed and (b) hand
opened.

Figure 3. An example of the impulse response of a Gaussian smoothing
filter with σ = 1.

use convolution to obtain the output x̂(t) of the GSF as
follows

x̂(t) = x(t)~ g(x(t)), (3)

where ~ denotes the convolution operator. Next, using the
convolution integral, (3) can be rewritten as

x̂(t) =

∫ ∞
−∞

x(τ)g(x(t− τ))dτ. (4)

Let x denote the vector of signals captured from noisy
sensors and suppose that x is required to develop a classi-
fier with the corresponding target output y. Figure 3 shows
the impulse response of the GSF and taking the Fourier
transform for (2), we obtain

G(f) = e−2π
2f2σ2

, (5)

where f denotes the frequency. Eq. (5) is also a Gaussian
function, thus revealing that both the time and frequency
domain responses of GSF have a similar support that is
a Gaussian function. Even though a GSF behaves like a
low-pass filter, its Gaussian function provides a good com-
promise of, partially, retaining high frequency components
of the original signal and reducing possible distortions of
the signal while smoothing noisy signals.



B. Filtered EMG Signals Classification

Using (4), one can rewrite (1) in terms of the filtered signal
as

yphase`(t) =

{
1, if x̂(t) ∈ phase`
0, otherwise.

(6)

To realize (6), the existing classification techniques can be
employed for developing models that accurately approxi-
mate (6). The pattern classification literature offers many
techniques that can be employed for such a classification
task. Below, we summarize four well-known classification
techniques for which further details can be found in the
classification and statistical modeling literature (see [16],
[17]).

1) Support Vector Machine (SVM): Given the training data
set D = {(x1, y1), ..., (xN , yN )}, the SVM classification
technique can be formulated as a solution to the following
quadratic optimization problem [18]

min
www,ξξξi

J(w, ξi) =
1

2
‖w‖2 + C

N∑
i=1

ξi, (7)

subject to
yiψ(w

Txi) ≥ 1− ξi, (8)

where (w, ξi) are the SVM parameters with ξi ≥ 0, C is a
constant vector, and ψ(·) characterizes the classifier. Thus,
estimation of w and ξi for a given training set produces the
information on the boundaries for class separation, which
yields good classification performance. The optimization
problem of (7), (8) can be solved using various techniques,
for example, the Lagrange multiplier optimization method,
which is frequently employed and yields excellent classifi-
cation performance. See [16], [17] for further details about
the SVM technique.

2) k-Nearest Neighbor (k-NN): Given the set of data D, the
k-NN technique can be employed in estimating the output
of a classifier using

ŷ(x) =
1

k

∑
xi∈Nk(x)

yi, (9)

where ŷ(x) is the classifier output, Nk(x) is the neigh-
borhood containing k closest points of x, namely, xi, i =
1, . . . , k, and yi is the class label corresponding to the point
xi. The neighborhood can be specified by using any of the
following distance measures, among others,

d(xi, xj) =

√√√√ k∑
i=1,i6=j

(xi − xj)2, (Euclidean) (10)

d(xi, xj) =

k∑
i=1,i6=j

|xi − xj |, (Manhattan) (11)

d(xi, xj) = (

k∑
i=1,i6=j

(xi − xj)p)
1
p . (Minkowski) (12)

Then if ŷ(x) is greater than a certain threshold, e.g. 0.5 for
binary classification with 0 or 1 outputs, then x is deemed

to belong to one class otherwise it belongs to the other class
(see [17] for further details about the k-NN technique).

3) Naive Bayes Classification (NBC): Suppose that K is the
total number of possible categories, or labels, that yi can
take and let πk be the prior probability that xi corresponds
to the kth class with k = 1, 2, . . . ,K. Let Pk(x) = p(x =
xi|y = ck) denote the density function of x obtained from
the kth class where ck is the label of the kth class of y.
Using Bayes rule, one can show that

p(y = ck|x = xi) =
πkPk(x)∑K
j=1 πjPj(x)

. (13)

In (13), p(y = ck|x = xi) is called the posterior probability
that suggests y = ck given the predictor xi. Thus, the class
with the largest posterior probability for a predictor xi is
judged to be the class to which the predictor xi corresponds
and this is called the Naive Bayes Classification (NBC)
[16], [17]. Note that Pk(x) is a key factor in specifying
the accuracy of classification and one of the simplest, yet
efficient, scheme is to employ the Gaussian function for
approximating Pk(x).
4) Linear Discriminant Analysis (LDA): The LDA classi-
fication ([16], [17]) is developed based on the NBC. If
one assumes that the data x is drawn from a Gaussian
distribution, then by taking the log of (13), one obtains

δ̂k(x) = x
µ̂k
σ̂2
− µ̂2

k

2σ̂2
+ log(π̂k), (14)

where
µ̂k =

1

nk

∑
i:yi=ck

xi, (15)

σ̂2 =
1

N −K

K∑
k=1

∑
i:yi=ck

(xi − µ̂k)2, (16)

π̂k =
nk
N
, (17)

nk is the number of training samples of the kth class. A
sample is deemed to belong to a certain class if (14) results
in the largest value for that class. This is why (14) is called
a discriminant and its linearity with respect to the predictor
gives the linear attribute of the LDA classification process.

IV. EXPERIMENTAL VALIDATION

To evaluate the performance of the GSF and its impact on
the EMG classification problem for hand gesture recog-
nition, we consider the scenario shown in Figure 4 with
six distinct hand gestures: flexion, extension, wrist flexion,
wrist extension, pinching, and index extension that are
named in this paper as Phases 1, 2, 3, 4, 5, and 6, respec-
tively, (i.e., phase`, ` = 1, . . . , 6). A Thalmic Labs MYO
band, containing eight EMG sensors, is used for capturing
the EMG signals of the hand during the aforementioned
hand gestures performed by a single subject. The sampling
rate of the EMG signals is 200 Hz and the EMG data
from the MYO band is communicated using its built-in
Bluethooth capability. A laptop computer uses a compatible



Bluetooth 4.0 low energy USB adapter provided with the
MYO band to receive the data and stores it for further
processing. All computations for signal processing and
classification are performed using MATLAB running on the
aforementioned 64-bit computer with Microsoft Windows
7 Operating System, an AMD 2 GHz CPU, and 16 GB
RAM. Figure 5 shows the unfiltered EMG signals for all
six phases of the hand gestures considered in this paper.
For the experiments of this section, number of samples
used in six phases considered were: Phase 1: 2570, Phase
2: 2121, Phase 3: 2147, Phase 4: 1483, Phase 5: 1161,
and Phase 6: 1229. To evaluate the performance of the
EMG signals classification considered in this paper, a ten-
fold cross validation was employed, as detailed in [17],
without any random redistribution of the sensed time-series
signals since the time-series is already a random variable
and random redistribution of the signals might impose
another distribution, affecting the prior distributions of the
given samples. Furthermore, it was shown in [19] that the
regularized empirical risk functional, for modeling a time-
series, is related to the relative positions of the samples
of the given time-series signal and changing the sequence
might change the modeling problem settings.

Employing the SVM, LDA, NBC, and k-NN to classify the
EMG signals of Figure 5 resulted in classification accuracy
of 79.82%, 83.33%, 86.31%, and 93.56%, respectively.
Note that amplitude values received from the eight channels
of the MYO band served as the input features to the classi-

Figure 4. MYO band with multiple situations: (a) Flexion, (b) Extension,
(c) Wrist flexion, (d) Wrist extension, (e) Pinching, and (f) Index
extension.

Figure 5. The unfiltered MYO band EMG signals, with signals from
eight sensors on separate subplots.

Figure 6. The filtered MYO band EMG signals, with signals from eight
sensors on separate subplots.

fication four algorithms. Using the GSF with σ = 2, which
was manually tuned and selected, the filtered EMG signals
shown in Figure 6 are obtained. With the filtered EMG
signals of Figure 6 used for classifying the hand gestures
under consideration, the SVM, LDA, NBC, and k-NN
classification techniques yielded classification accuracy of
94.52%, 93.19%, 93.79%, and 98.09%, respectively. Thus,
it is seen that the use of GSF in the EMG classification
process results in significant improvement in performance



Table I
ENHANCEMENT OF EMG SIGNALS CLASSIFICATION.

Scheme Performance (%) Performance (%)
without GSF with GSF

SVM 79.82 94.52

LDA 83.33 93.19

NBC 86.31 93.79

k-NN 93.56 98.09

Figure 7. The enhancement in classification performance.

for all four classification techniques considered in this
paper. Such a classification performance enhancement is
a consequence of filtering out the noise from the EMG
signals. Table I and Figure 7 summarize the classification
accuracy of the aforementioned techniques with and with-
out using the GSF in filtering out the noise. The GSF
filter has only one parameter, the standard deviation σ,
and its implementation is simple. The main reason behind
the efficient performance of GSF in filtering out the noise
stems from the nature of the similarity of supports in both
time and frequency domains, i.e. both of them are Gaussian
functions, since the frequency transform of a Gaussian
function is Gaussian as well. Thus, high frequency noise
is eliminated without suppressing and deteriorating the
corresponding EMG signal quality rendering efficient noise
filtering process that is reflected on the EMG classification
task. Figure 7 provides a visual representation of results of
Table I and explicitly shows the classification enhancement
in the four classification techniques considered in this
paper.

Measuring the time required for developing and testing
the models of the unfiltered EMG signals resulted a total
computational time of 402.96 sec when using the SVM,
9.33 sec for the LDA, 10.62 sec when employing the NBC,

Table II
ACCUMULATIVE COMPUTATIONAL TIME.

Scheme Time (sec) without GSF Time (sec) with GSF

SVM 402.96 381.11

LDA 9.33 4.14

NBC 10.62 6.54

k-NN 10.18 5.14

Figure 8. The reduction in computational time.

and 10.18 sec in the case of k-NN. The corresponding
time required for developing and testing the models for
the case of filtered EMG signals was found to be 381.11
sec when using the SVM for classifying the EMG signals,
4.14 sec for the case of LDA classifier, 6.54 sec when
employing the NBC while the k-NN required 5.14 sec.
Table II summarizes this time measurement data. It is
obvious from Table II that the measured computational time
is reduced significantly, for all classification techniques
when using the GSF in filtering out the noise from the
sensed EMG signals. The rate of approximation rN in a
learning process is related to the smoothness of a signal by
the relation [20]

rN = N
− s
Nd , (18)

where s is a smoothness measure of the signal and Nd is
the dimensionality of the input training space. Thus, for a
fixed N and Nd, according to (18) one can deduce that
increment in the smoothness s of the EMG signals results
in decrement of the rate of approximation rN leading to
a faster approximation of the risk functional of the EMG
classification process2. When employing the GSF, the value
of s increases resulting in reduced values of rN which
speeds up the process of approximating and minimizing
the risk functional of the classification process. Figure 8
provides a visual representation of results of Table II and it
is obvious that employing the GSF, in filtering out the noise
of the EMG signals, significantly reduces the computational
cost.

Employing a 10th-order Median Filter (MF) in smoothing
the EMG signals of Figure 5 results in 90.91%, 89.50%,
89.53%, and 95.43% classification performance with SVM,
LDA, NBC, and k-NN, respectively. Clearly, the MF pro-
vides a significant enhancement in classifying the consid-
ered EMG signals. With the previously obtained classifi-
cation performance when using the raw EMG signals and
GSF-based EMG signals, (see Table I, and Figure 7), we
compute the improvement in the classification performance
of the four techniques considered in this paper with GSF

2See [18] for more details about the relation between the risk functional
approximation and the smoothness of a function.



Figure 9. Improvement in classification performance when using the
Gaussian Smoothing Filter (GSF) and Median Filter (MF).

versus raw signals and MF versus raw signals. These
improvements in classification performance with the use of
smoothing filters are shown in Figure 9, which shows that
the GSF-based EMG signals yield superior performance
with all four classification techniques. Figure 9 illustrates
that the SVM classification, for both cases of the GSF
and MF, has the highest value of improvement, indicating
that the SVM technique has higher sensitivity to noise.
Clearly, from Figure 9, LDA, NBC, and k-NN techniques
also witnessed a significant enhancement, reflecting their
sensitivity to the noise as well. Noise in the EMG signals
results in a change in the decision boundary of the classi-
fiers degrading their performance.

V. CONCLUSION AND FUTURE WORK

In this paper, a Gaussian Smoothing Filter (GSF) is em-
ployed to enhance the classification process for hand ges-
tures sensed using the Electromyography (EMG) sensors.
The sensed EMG signals are shown to be contaminated
with a significant amount of noise that results in a de-
graded classification performance. Employing the GSF, the
noise of the EMG signals is filtered out to eliminate the
undesirable and unpredictable effect of noise, enhancing
the classification performance. Experiments are conducted
using a MYO band for a classification scenario consisting
of six distinct hand gestures. To examine the performance
of the GSF, four EMG signals classification techniques
are considered: Support Vector Machine (SVM), k-Nearest
Neighbor (k-NN), Linear Discriminant Analysis (LDA),
and Naive Bayes Classifier (NBC). Each of the aforemen-
tioned classification techniques is shown to yield enhanced
performance when presented with signals smoothed using
GSF versus the noisy, raw signals. Furthermore, employing
the GSF is shown to reduce the computational time of the
learning process. Finally, a comparison is performed for
classifying the EMG signals smoothed using the Median
Filter (MF) versus the GSF, and the GSF is shown to yield
superior performance.
Despite the excellent performance reported in this paper
with the use of GSF, its standard deviation is not optimized
and this may affect the filtering process, producing non-
optimal classification results. Thus, future work will focus
on developing an enhanced GSF algorithm where the

optimal value of the standard deviation is estimated and
integrated in the classification process.
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