
A Rodent Paw Tracker Using Support Vector Machine  

O. Haji Maghsoudi, A. Vahedipour Tabrizi, B. Robertson, P. Shamble, and A. Spence 

Department of Bioengineering, College of Bioengineering, Temple University 

o.maghsoudi@temple.edu 

The observation of both human and animal kinematics has proven to be of tremendous scientific value 

for both understanding biological phenomena and development of medical treatments. Rodents, in 

particular, are widely used as a model for human disease.  Unfortunately, they are also notoriously 

difficult to use in experiments requiring the use of motion capture (MoCap) for kinematic analyses. 

Current commercially available technology for rodent MoCap (e.g. Digigait [1, 2], Motorater, Noldus 

Catwalk [3, 4]) requires either frequent anaesthesia for shaving and tattooing of anatomical landmarks , or 

retroreflective markers known to agitate rodent subjects.   Less automated methods require the use of high 

speed video capture and manual tracking, which both time and data intensive.   

In an attempt to overcome these challenges, we developed a “markerless” approach to tracking rodent 

paws for kinematic analyses that uses the HSV color space to segment images and identify paws based on 

hue channel values [6]. In addition, the application of hue thresholding is presented for segmentation in 

wireless capsule endoscopy frames [7].  While this approach initially showed promise in a single subject, 

it was not generally applicable to all mice, and was unable to recover from classification errors.  Here, we 

present a modified version of this approach that includes the use of a support vector machine (SVM) to 

more robustly identify and track paws without the use of conventional marker based or manual 

approaches.  

All data shown here was collected on a computer vision controlled treadmill with integrated high 

speed (250Hz) synchronous video capture across 5 cameras [8].  Each collection consisted of 1000 frames 

of 2048x700 images.  Data shown here used two camera views and 16 videos (for a total of 32,000 

frames) from 5 C57BL/6 mice. In overview, three principal stages were used to track paws automatically 

based on color, kinematic, and texture information. First, images were segmented based on color [6] (Fig. 

1) to identify candidate paws.  Next, the vertical and horizontal speed of the paws from the preceding two 

frames (for a total of four kinematic features) and the average intensity and entropy (to quantify texture), 

of the paw regions were used to create a feature matrix. This feature matrix was by an initial SVM to 

determine whether candidate regions were paw or non-paw. Then, a second SVM used the same feature 

matrix to classify paws as front or hind. Finally, we applied a checking protocol that handled collisions 

and occlusions based on knowledge of paw motion in rodent gait (Fig. 1).  This approach successfully 

identified the front paw in 99.75% of the video frames in the test data set. For the hind paw the success 

rate was 99.97%.   

Our approach to automated feature/paw tracking in rodents performed as well or better than 

conventional marker-based approaches to automated tracking.  By combining multiple synchronized 

camera views with 3D reconstruction methods (i.e. Direct Linear Transform), we are now able to track 

paw position through time with high fidelity (Fig. 2).  This sort of spatiotemporal information is of 

tremendous value for understanding fundamentals of robust locomotion and adaptation in pathological 

gait in rodent models.  Because we are able to capture locomotion kinematics without the use of sticky 

markers, we can minimize agitation, and insure a more naturalistic gait in rodent subjects. First and 

foremost, we hope to expand this approach and make it more robust to both camera position and 

variability in presentation of anatomical landmarks.  We also hope to apply it to tracking of paw and body 

kinematics in studies of perturbed healthy gait, as well as rodent models of disease to characterize 

features of gait pathology. To compare our method, we will try to use other methods like deep learning 

and sparse decompositions [9]. 
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Fig 1. The segmentation process for a sample frame. (a) Original frame, (b) the hue channel, (c) thresholded hue channel, (d) 

after median filtering of (c), and (e) the final segmented regions transferred in colored images. 

 

Fig 2. The 3D coordinates of segmented hind left paws for three strides using Direct Linear Transform (DLT). (A) 3D 

coordinates extracted using DLT coefficients, (B) 2D the coordinates in xz plane, and (C) 2D the coordinates in yz plane. 
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