
  

 

Abstract— Human gait is a complex process resulting from 

contraction of various muscle groups with different sizes.  With 

the loss of a lower limb, amputees use passive prosthetics to 

replace the lost limb and regain function. Operating a prosthetic 

leg, requires more metabolic energy expenditure and greater 

pressure on the residual limb. In order to understand the muscle 

activity during human gait, a set of loads were used to model the 

amputated gait on normal subjects. The loads comprised of 

sandbags with weights of 5, 10, and 15 lbs. Using 10 Inertial 

Measurement Units (IMU) alongside 20 Electromyography 

(EMG) sensors, physiological and kinetic signals were recorded 

with non-invasive sensors placed on the lower body. Trials were 

comprised of recording gait from 8 voluntary subjects, and this 

data was analyzed in the following steps. First, the data was pre-

processed using signal processing techniques and, the steps were 

extracted using a local extrema detection technique from IMU 

signal as time stamps. Next, to have a numerical measure for the 

ease of analysis, several features extracted from the EMG signal 

for each step. The distribution of the features extracted from the 

signals while subjects performed gait in different states were 

compared. The results were obtained using students’ t-test and 

the hypothesis of having the same distribution was rejected with 

a p-value of less than 0.005. The results revealed that the muscles 

on the intact limb had more activity and sensitivity as a result of 

compensation for the loaded leg. Vastus Medialis, Vastus 

Lateralis and Biceps Femoris for the left leg provided escalation 

in activity according to the features for 100% of the subjects, 

even with the addition of the smallest load (5 lbs.). Results of this 

study will determine the sensitivity of muscles to deviation from 

normal gait and, fewer number of inputs will be used to calibrate 

and control an active prosthetic limb. This will reduce the 

complexity and increase the speed of computation. 

Keywords—Gait analysis; Electromyorgraphy; Inertial 

measurement unit; statistical signal processing; 

I. INTRODUCTION 

In recent decades, human gait analysis has been one of the 
major studies for understanding the complex biomechanical 
and physiological processes while initiating gait. Various 
equipment and methods have been proposed and applied to 
obtain the best model for the activity of different sections of 
body during gait. In order to reach this goal, numerous 
equipment such as electromyographic (EMG) signals [1], 
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inertial measurement units (IMU), force platforms [2], knee 
force [3], and center of mass [1] have been used. Previous 
studies concentrated on presenting a gait model using different 
sensor inputs, which can be applied in diagnosis as well as 
prediction for patients suffering from various motor diseases 
such as Parkinson’s, Multiple Sclerosis (MS), prosthetic limb 
control, etc. In order to have a precise assessment for the 
purpose of detection, prediction, or control of patients with 
different conditions, it is crucial to have an accurate gait 
model.  

Gait analysis is aimed at understanding the kinematics and 
kinetics of locomotion using signal processing from 
biomechanical or physiological sensors. Herzog et al. [2] used 
a force platform and measured the variations in pressure on a 
platform during gait. They presented a symmetry/asymmetry 
measure and quantified it to evaluate the gait. Lunderberg et 
al. [4] also collected the contact force data on the knee joint 
and suggested a model for the sensitivity of abnormal gait 
based on pressure sensor recordings. Kurayama et al. [1] 
studied the movement characteristics of the kneeling gait and 
compared it with the normal gait. They used electromyography 
(EMG) and center of mass signals. They showed that the 
kneeling gait is an effective tool for rehabilitation of gait stroke 
patients. Di Narde et al. [5] also used EMG during gait and 
studied the co-contractions during the ankle 
plantar/dorsiflexion. In addition to various gait studies, there 
has been a lot of focus on gait for the subjects that went 
through amputation. These studies focused on energy 
expenditure and symmetry to obtain the most natural gait 
pattern for the amputee subjects. Using force platforms, TV-
computer and pylon transducer systems, Zahedi et al. [6] 
quantified the degrees of repeatability and observed that the 
variability was more in amputees and it is augmented as the 
amputation was more proximal. Torburn et al. [7] analyzed 
gait of amputees while they wore four different prosthetics and 
compared their performances. Sacco et al. [8] compared the 
lower limb EMG signal and ground reaction forces in diabetic 
subjects and non-diabetic ones during gait, which revealed a 
different motor strategy in diabetic subjects. Wentik et al. [9] 
used EMG signals to observe the intention of gait initiation in 
amputees and, to reach this goal, they used inertial 
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measurement units (IMU) to observe gait. Even though this 
topic has been the issue of major scholars in previous decades, 
the results are far less optimal and possess less applicable 
insight and transition into real life. Ongoing research focuses 
on different parts of gait to provide an optimal and in depth 
understanding of its neuro-muscular and kinetic processes. 
These signals are being used to observe the deviation from 
normal gait pattern that occurs with amputation. Various 
measurements such as surface electromyography (EMG), 
inertial measurement units (IMU), motion tracking system and 
electroencephalogram (EEG) are being used to reach this 
purpose. 

This study focused on variations of muscle activity during 
normal gait for the purpose of determining the sensitivity of 
muscle groups in response to a change in load, which can then 
help determine the muscle groups that will be best in future 
studies for calibration and control of lower limb prosthetics. 
This will reduce the amount of complexity for control aim, as 
it will require less inputs. To obtain the sensitivity for the 
muscle activities and model the amputee condition, several 
loads were tested on the lower limb for the subjects. A wide 
range of muscle groups were studied while subjects with 
normal gait were walking on a treadmill and the EMG and 
IMU signals were recorded. Results showed the effectiveness 
of the EMG signal in modeling the muscle activity during gait.  

In this study, the gait procedure for lower body was 
observed using kinetic sensors alongside physiological 
sensors. These systems have been observed in subjects with 
normal gait and, to observe and model the muscle activity for 
lower limb amputees, various loads have been applied on the 
right ankle. The amputees replace the lost limb with a passive 
prosthetic and they lack the muscles on the lower limb to 
facilitate the gait. As a result, they endure more pressure on the 
residual limb and, the activity of the muscles on the residual 
limb increases as compared to non-amputees. Based on this 
reason, a non-invasive way to model increase of load on the 
muscles is decided to be the addition of load to lower limb. 
The motor and the battery for the active prosthetics are usually 
placed on the ankle. So it is fair to model the prosthetic limbs 
effect on the residual muscles by placing load on the ankle. 
The addition of the load on the leg presented an increase in 
muscle activity and sensitivity of several muscle groups were 
observed. This will provide enough information to optimize 
the gait pattern for patients who underwent amputation using 
biomedical and kinetic signal processing techniques.  

The rest of this paper is organized as follows: section II 
presents data acquisition techniques that were used, section III 
consists of the methods used in this study and, section IV 
shows the results acquired from processing of the data, and in 
section V discussion regarding the results is provided.  

II. DATA ACQUISITION  

Having a reliable data set is one of the major parts of the 
study. In order to have a good model for the gait and imitate 
the load of prosthetics on normal subjects, a setup was made 
in the lab. The setup contains a treadmill and several sandbags 
to be attached to the leg. Also, physiological and kinematic 
sensors were used to collect data while subjects were operating 
on the treadmill. In this study, we focused on the signals from 
EMG and IMU sensors to highlight the neuro-muscular 

activation during deviation from normal gait. The setup is 
shown in Figure 1. 

A. Electromyography 

EMG is an experimental technique concerned with the 
development, recording, and analysis of myoelectric signals. 
Myoelectric signals are formed by physiological variations in 
the state of muscle fiber membranes [10]. EMG signals contain 
information regarding neuro-muscular activation of muscles 
and could be easily and non-invasively recorded using surface 
electrodes.  

Human gait is a complex process during which numerous 
muscles with various sizes and power collaborate to form each 
portion of a step. In order to have an in depth look at the 
muscles on the lower body, a 20 channel setup was made to 
record surface EMG signals. The following muscle groups 
were recorded and analyzed in this study: Tibialis Anterior 
(TA), Soleus (Sol), Gastrocnemious Lateralis (GL), 
Gastrocenmius Medialis (GM), Vastus medialis (VM), Vastus 
Lateralis (VL), Rectus femoris (RF), Biceps femoris (BF), 
Glutes Medius (GMed), Tensor fascia latae (TF), Gluteus 
Maximus (GMax), Semitendinosus (ST). The first four muscle 
groups (TA, Sol, GL, and GM) belong to the lower limb. As 
we placed a load on the lower right leg, these data were 
recorded only from one leg. Using this approach, asymmetric 
gait in amputees was modeled. Four different states of walking 
with load on the lower right leg was studied. Loads consisted 
of sandbags with a weights of 5, 10 and, 15 lbs., and were 
placed on the right ankle. Using Shimmer3 EMG unit, the 
EMG signal for these muscles was recorded using standard 
silver/silver-chloride surface electrode pads with the sampling 
frequency of 1KHz from both thighs and left lower limb (right 
leg was considered as amputated) [11]. Electrodes were placed 
on the surface of the skin with respect to the sensor locations 
recommended by SENIAM [12].  

 

Figure 1. Setup for data collection 



  

B. Inertial Measurement Units 

Navigation is accomplished by recording the accelerations 
and calculating the change of position after initial alignment 
[13]. IMUs are the main idea for the navigation and consists of 
various sensors including; magnetometers, accelerometers, 
and gyroscopes. In this paper ten, IMU sensors were placed on 
both thighs and the left lower limb. The IMUs have been 
recorded using the same Shimmer3 EMG units [11] with the 
sampling frequency of 1 kHz.  

 
Figure 2. EMG signal recorded from VL muscle of subject 3, while initiating 

gait on treadmill. EMG activity for four different values of load is illustrated. 

It is observable that with increase of weight on the ankle, the EMG activity 
increases (Both in amplitude and frequency content) in this muscle, which 

indicates increase in energy consumption. 

C. Database 

The physiological and kinetic signals that is proposed in 
previous section was collected in the lab environment. Eight 
male subjects were recruited throughout the study (24±2 years 
old, and BMI of 23.3±1.5). The study was approved by the 
institutional review board (IRB) of Florida International 
University. All the subjects signed an informative consent 
form prior to data collection. Subjects were asked to walk for 
a minute on a treadmill with the speed they felt comfortable 
with. During the data collection, 20 channels of EMG 
alongside 10 channels of IMU signals were recorded with a 
sampling frequency of 1 kHz. The recordings were done over 
four different states of walking (0, 5, 10, 15 lbs.). Different 
walking states were modeled using sandbags, and they were 
placed on the ankle of the lower right leg of the subject. Figure 
2 illustrates the EMG signal for VL recorded from the left leg 
of subject 3. The increase in the neuro-muscular activity is 
observable from the amplitude of the EMG signal in the figure. 
It is worth noting that even though it is not observable from 
the plot, the frequency of the signals also increases with the 
addition of load. To illustrate this we extracted some features 
to show the frequency change in the signal. 

III. METHODS 

The recorded data in this study was analyzed offline to 
observe the complex process of human gait in neuro-muscular 
and kinetic sense. They were statistically evaluated to observe 
the sensitivity of various muscle groups on different subjects.  

A. Pre-processing and artifact removal 

Prior to any comparison, it is crucial to remove the artifacts 
and outliers from the signals. The EMG signal is highly 
sensitive to the noise and it is highly contaminated with the 
low frequency alternations of motion artifact (0-15 Hz). To 
eliminate the motion artifact and other high frequency noises 
from EMG signal, a forth order Butterworth band pass filter 
with the cut off frequency of 15-450Hz was designed and 
applied [14]. In order to have a comparable measure between 
various recordings, each EMG signal was normalized with 
respect to its maximum value in normal walking for each 
subject. 

From the IMU signals, the magnetometer was chosen to be 
used as it had smoother content than the gyroscope and 
accelerometer data. Magnetometer data was utilized to 
discriminate between each step.  Prior to step detection, the 
magnetometer data was a low pass filtered with the cut off 
frequency of 20 Hz using the Butterworth approach. A local 
minima-finding algorithm was applied to the signal and local 
minimums were determined in a 700ms window. The window 
size defined by manual inspection of difference between each 
step. After detection of minimum points, the time difference 
for consecutive minimums were determined and compared to 
the mean for all of them. Based on the difference, missed 
minimums or sporous ones were corrected. Figure 3 illustrates 
a sample magnetometer signal from the left ankle of subject 3 
alongside the EMG signal for his Soleus muscle.  

Based on the detected points for the magnetometer signal, 
the EMG signal was chopped into each step. In further 
analysis, the EMG data for each step was used and the features 
were extracted from them, and then compared in different 
states of walking.  

 

Figure 3. Magnetometer signal with the detected local minimums for the 

ankle of subject 3, alongside with the EMG for Soleus muscle recorded using 
the same sensors. 



  

 

B. Feature evaluation 

The EMG signals collected from the surface of skin are 
highly complex and represent the summation of firing of motor 
unit action potentials around the area that the electrode was 
placed. So as a result, the EMG signal contains valuable 
information regarding the muscles performance and energy 
expenditure. In order to comprehend the process with less 
mathematical complexity, several numerical features in time 
domain have been proposed. These features provide numerical 
values used to compare different states during gait and to 
obtain the variations. The following features have been 
proposed to be used in EMG signal processing [15]: 
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Where, xi is the band pass filtered and N is the number of 
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 Wilson amplitude, which is defined as number of the 
times that the EMG signal exceeds a threshold. It is an 
indicator of the firing of motor unit action potentials. 
As this feature shows the number of action potentials, 
it will present information regarding the frequency 
content using simple calculations in time domain. This 
feature is defined as follows: 
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 Zero crossing, which is the number of times the EMG 
signal passes through the amplitude zero. This feature 
is an indicator of frequency variations in time domain 
and it is calculated as below:  

Figure 4 . Sample result of distribution for four different features and subjects. (a) WAMP feature derived from Soleus muscle of subject 8. This muscle 

does not present an increase in the EMG activity in the means of WAMP feature. (b) MAV feature extracted from VL muscle on the left thigh for subject 1. 
The EMG activity shows a comparable increase for various load levels. (c) Variance feature for the BF muscle on the left side of subject 4. This muscle also 

presents augmentation in the EMG activity with addition of more loads. (d) ZC feature for GMax from the right leg of subject 3. This muscle shows an 

increase in the activity in the sense of zero crossing for 10 and 15 lbs. load but, does not present much variation for 5 lbs. which, shows that GMax has less 
sensitivity for the 5 lbs. sandbag.      
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 Shannon Entropy: this feature measures the 
uncertainty associated with a random variable [16]. 
This feature can be calculated using the probability of 
the signal as followed: 

)(log 2 ii ppSE                                                             (5) 

Where, pi is the probability of occurrence of an event xi.  

Later, these features were extracted from the EMG signal 
of each muscle in each step (detected using magnetometer 
signal). The extracted features were used to compare the 
variations in neuro-muscular activity with the addition of load 
on the right ankle. 

C. Statistical analysis 

In this study, a statistical approach was implemented to 
point out the difference between states of walking. To do so, 
the statistical hypothesis testing of students’ t-test was used. 
This approach tests the distribution for variables with a 
hypothesis that the random processes have the same 
distribution and presents the result with the probability of them 
having the same distribution. 

IV. RESULTS 

The collected EMG and IMU data were analyzed offline 
using MATLAB.  Signals were collected from 8 subjects while 
they were walking on a treadmill with the speed they felt 
comfortable. The recording was for a minute of walking, and 
it was done for several repetitions using various weights of 
sandbag on the lower right leg. The data was pre-processed to 
eliminate noise and baseline drift. Then, the data was 
normalized for each subject to have comparable scale and, the 
proposed features have been extracted from all of EMG 
signals. The features calculated were used to investigate the 
variation in gait parameters. Each sensor contained two 
channels of EMG and one channel of IMU. The data was 
collected from 20 muscles and 10 IMU signals. The 
magnetometer signal from each sensor was used to detect steps 
and chop the EMG channels from the same sensor.  

The statistical students’ distribution analysis was done 
over all of the features to observe the change in activity of the 
muscles. The results were in coherence with the hypothesis 
that the load would change and have different distribution in 
comparison with normal gait. It was observed that muscular 
activation for VL, BF, VM muscles increased for all of the 
subjects. The muscles that were most sensitive to the change 
in load are depicted in Table I. In Figure 4, the distribution for 
four different samples of features from various subjects is 
presented. In the figure it is observable that the Soleus muscle 
for the 8th subject, does not present meaningful increase in the 
EMG activity. Furthermore, the plot shows the increase in 
distribution for BF and VL muscles on the left foot. It is 
obvious how the distribution for the feature increased with 
addition of the weight. Also, distribution for GMax of 3rd 

subject shows the condition where it does not have a 
meaningful increase in distribution with addition of 5 lbs. But 
this muscle presents an augmentation in the activity with 
addition of other loads. 

In addition to the single feature distribution comparison of 
data, the features have been combined into a single feature by 
calculating the sum of the square root and fused them into one. 
The results obtained from the new feature showed the 
variations in the pattern of activation for muscles. Even though 
there was difference between subjects, but the new feature still 
showed the similar increase in the firing of motor units in VM, 
VL and, BF of the left leg. 

Table I. Results for the statistical analysis of muscles using 5 different 
features. Second column presents the muscles that had sensitivity for all of the 
sandbag levels and they were compatible for all subjects. Last column shows 
the muscle that were not sensitive enough to observe variation for 5 or 10 lbs. 
loads. 

V. DISCUSSION 

The human gait is a very complex process and during it 
many muscles get activated by neurological stimulations. 
Current work was designed to investigate the human gait while 
various loads were attached to a lower limb and present the 
increase in the muscle energy expenditure. A comprehensive 
study over 20 channels of EMG and 10 channels of IMU were 
carried out throughout this study. The results mainly showed 
that the subjects depend on the leg that doesn’t have a load and 
the EMG data from that leg presented higher activity than the 
leg with the sandbag on. This observation was in accordance 
with the visual inspection of the subjects, where they tend to 
take shorter strides with their right leg. In order to compensate 
the limitations applied by the sandbags, the muscles on the left 
leg were more active. Mainly the muscles on the thigh were 
more sensitive to variations from normal gait. The VM, VL, 
BF muscle groups showed a good sensitivity and they had 
statistically meaningful difference in distribution with a p-
value smaller than 0.005. Other muscle groups that showed a 

Feature Muscles that rejected the 
null hypothesis for addition 
of all loads (p<0.005) 

Muscles that rejected the 
null hypothesis for addition 
of 15lbs loads (p<0.005) 

MAV GMed (right), VL (left), BF 
(left) 

*except GMed for subject 3, 
4 

VM (left), RF (left) 

*except subject 7 

VAR GMed (right), VL (left), BF 
(left) 

*except GMed for subject 3, 
4 

VM (left), RF (left) 

ZC VM (left) 

*except subject 1 

Gmax (right) 

*except subject 7 

WAMP VM (left), GMax (right) 

*except GMax for subject 7  

GMed (right), TF (right), 
BF (left) 

*except TF for subject 3, 8 
and, except GMed for 
subject 2, 7 

SE GMed (right), VL (left), BF 
(left) 

*except GMed for subject 3, 
4 

VM (left), RF (left), VL 
(right), GMax (left) 

*except VM for subject 1, 2 
and GMax for subjects 2, 6 
and VL for subject 4 



  

good sensitivity to the deviation from normal gait were RF, 
GMed and, GMax.  

Gait process is slightly different in every person since the 
muscle and fat varies, which affects the EMG signals. Keeping 
this in mind, the difference in the gait pattern in between 
subjects can be expected. For example, subject 3 and 4, the 
variations in the GMed muscle was not comparable suggesting 
this signal is not suitable for gait observation in these subjects. 
Also this muscle is a small fiber in comparison with the others 
which influences the positioning and it is more delicate to the 
fat layer beneath the skin. 

Currently, the results obtained from this study is being used 
to calibrate and optimize an active prosthetic limb. Also, in 
future works, one can fuzzify the approach by presenting a 
membership value for each muscle and magnifying their 
participation in the gait process. This work does not consider 
the dominant foot. Future studies might keep left or right-
footedness in mind and analyze muscle activity.  

 

References 

[1] Kurayama, Taichi, Yusuke Tadokoro, Shuhei Fujimoto, Zen Komiya, 
Susumu Yoshida, Sudesna Chakraborty, Daisuke Matsuzawa, Eiji 
Shimizu, Kunitsugu Kondo, and Yohei Otaka. "A comparison of the 
movement characteristics between the kneeling gait and the normal gait 
in healthy adults." Gait & posture 37, no. 3 (2013): 402-407. 

[2] Herzog, W. A. L. T. E. R., BENNO M. Nigg, LYNDA J. Read, and E. 
Olsson. "Asymmetries in ground reaction force patterns in normal 
human gait." Med Sci Sports Exerc 21, no. 1 (1989): 110-4. 

[3] Lad, Nimit K., Betty Liu, Pramodh K. Ganapathy, Gangadhar M. 
Utturkar, E. Grant Sutter, Claude T. Moorman, William E. Garrett, 
Charles E. Spritzer, and Louis E. DeFrate. "Effect of normal gait on in 
vivo tibiofemoral cartilage strains." Journal of Biomechanics (2016). 

[4] Lundberg, Hannah J., Kharma C. Foucher, Thomas P. Andriacchi, and 
Markus A. Wimmer. "Direct comparison of measured and calculated 
total knee replacement force envelopes during walking in the presence 
of normal and abnormal gait patterns." Journal of biomechanics 45, no. 
6 (2012): 990-996. 

[5] Di Nardo, Francesco, Alessandro Mengarelli, Elvira Maranesi, Laura 
Burattini, and Sandro Fioretti. "Assessment of the ankle muscle co-
contraction during normal gait: A surface electromyography study." 
Journal of Electromyography and Kinesiology 25, no. 2 (2015): 347-
354. 

[6] Zahedi, M. S., W. D. Spence, S. E. Solomonidis, and J. P. Paul. 
"Repeatability of kinetic and kinematic measurements in gait studies of 
the lower limb amputee." Prosthetics and Orthotics International 11, no. 
2 (1987): 55-64. 

[7] Torburn, L., Perry, J., Ayyappa, E. and Shanfield, S.L., 1990. Below-
knee amputee gait with dynamic elastic response prosthetic feet: a pilot 
study. J Rehabil Res Dev, 27(4), pp.369-84.C. J. Kaufman, Rocky 
Mountain Research Lab., Boulder, CO, private communication, May 
1995. 

[8] Sacco, Isabel CN, Paula MH Akashi, and Ewald M. Hennig. "A 
comparison of lower limb EMG and ground reaction forces between 
barefoot and shod gait in participants with diabetic neuropathic and 
healthy controls." BMC musculoskeletal disorders 11, no. 1 (2010): 1. 

[9] Wentink, E. C., S. I. Beijen, H. J. Hermens, J. S. Rietman, and P. H. 
Veltink. "Intention detection of gait initiation using EMG and kinematic 
data." Gait & posture 37, no. 2 (2013): 223-228. 

[10] Konrad, Peter. "The abc of emg." A practical introduction to 
kinesiological electromyography 1 (2005): 30-35. 

[11] Burns, Adrian, Barry R. Greene, Michael J. McGrath, Terrance J. 
O'Shea, Benjamin Kuris, Steven M. Ayer, Florin Stroiescu, and Victor 
Cionca. "SHIMMER™–A wireless sensor platform for noninvasive 
biomedical research." IEEE Sensors Journal 10, no. 9 (2010): 1527-
1534. 

[12] Hermens, Hermie J., Bart Freriks, Roberto Merletti, Dick Stegeman, 
Joleen Blok, Günter Rau, Cathy Disselhorst-Klug, and Göran Hägg. 
"European recommendations for surface electromyography." 
Roessingh Research and Development 8, no. 2 (1999): 13-54. 

[13] J. U. Duncombe, “Infrared navigation—Part I: An assessment of 
feasibility (Periodical style),” IEEE Trans. Electron Devices, vol. ED-
11, pp. 34–39, Jan. 1959. 

[14] Tkach, Dennis, He Huang, and Todd A. Kuiken. "Study of stability of 
time-domain features for electromyographic pattern recognition." 
Journal of neuroengineering and rehabilitation 7, no. 1 (2010): 1. 

[15] Boostani, Reza, and Mohammad Hassan Moradi. "Evaluation of the 
forearm EMG signal features for the control of a prosthetic hand." 
Physiological measurement 24, no. 2 (2003): 309. 

[16] Kamath, Chandrakar. "Entropy-Based Algorithm to Detect Life 
Threatening Cardiac Arrhythmias Using Raw Electrocardiogram 
Signals." Middle-East Journal of Scientific Research 12, no. 10 (2012): 
1403-1412.

 

 

 


