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ABSTRACT
Network neuroscience is an expanding interdisciplinary field at the

intersection of engineering, math, physics, and neuroscience dedi-
cated to understanding connectivity in the brain in health and dis-
ease. A critical challenge in network neuroscience is inferring brain
connectivity from statistical relationships in the functional dynam-
ics of individual brain regions. The ability to map brain connec-
tivity and retain neurophysiologic interpretation of those connec-
tions is crucial in the study of cognition and in the diagnosis and
treatment of brain network disorders. In this work, we propose a
method for estimating structural brain connections from excitatory
and inhibitory neuron populations using a neuronal network model
of Wilson-Cowan oscillators. Our technique estimates the weights
of a neuronal network comprised of Wilson-Cowan oscillators based
on the observation of times series data and on the knowledge of in-
dividual oscillator parameters. Specifically, we employ a derivative
estimation technique and develop an inverse nonlinear transforma-
tion, which leads to an estimation problem that is linear on the tar-
get network weights. To solve the associated large-scale optimization
problem we apply a proximal-type optimization algorithm. Finally,
to demonstrate the effectiveness of our method, we perform compu-
tational experiments using simulations based on neuroimaging con-
nectivity data, showing that network weights are recovered with high
accuracy. Our method contributes to integrating brain connectivity
with dynamical models of brain function, and may have an impact
in diagnosing and understanding pathophysiology in brain disorders
such as Parkinson’s, epilepsy, or schizophrenia, in which imbalances
in excitation and inhibition affect functional connectivity.

Index Terms— neuronal-mass models, time-series analysis, net-
work identification

I. INTRODUCTION

Complex brain networks describe an intricate wiring system for
the brain that constrains communication between populations of
neurons and supports behavior and cognition. Anatomical con-
nections –white-matter fiber tracts at the macro-scale and axonal
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projections at the micro-scale– link the functional roles of dis-
tributed populations of neurons, forming a map, or mathematical
graph, of the brain. Brain graphs commonly describe functional
activity of specific brain regions, or nodes, and the structural con-
nections between them, or edges [1]. In network neuroscience,
a long-standing question has been: “How might structure facil-
itate functional communication between brain regions?” [2, 3].
Or, more specifically, “How similar are structural brain graphs to
functional brain graphs?”. Studying such structure-function rela-
tionships in the brain would help network neuroscientists better
understand the anatomical substrates of cognition and the func-
tional consequences of its loss in disease.
To infer how brain regions communicate, network neuroscien-
tists measure functional connectivity by computing the statisti-
cal similarity between brain dynamics of different regions using
methods grounded in signal processing, information theory, and
time-series analysis [4, 5, 6]. There is overwhelming evidence
that different features of brain signal dynamics underlie func-
tional interactions between specific neuron types. This guiding
principle has motivated the use of different similarity functions,
such as the Pearson correlation coefficient, power spectral coher-
ence, wavelet coherence, and mutual information, to uncover lin-
ear and non-linear relationships between functional brain dynam-
ics. While these similarity measures have been used to map be-
havioral and cognitive states to stereotyped patterns of functional
interactions, the structural connections underlying inter-regional
functional relationships remain largely a mystery.
A critical limitation of existing statistical techniques for measur-
ing functional connectivity is that they are indirect measurements
of anatomic and physiologic features at the source of measured
brain signals. Compelling evidence that one of the basic process-
ing units in the neocortex is the cortical column, heterogeneously
comprised of interconnected excitatory and inhibitory neurons
that also communicate with neurons in other cortical columns was
first presented in [7]. Intuitively, the collective activity of colum-
nar neurons drives fluctuations in the local electric field potential.
The resulting neural field is believed to underlie a robust neuron
population-level code, which was modeled by Wilson and Cowan
by a coarse-grained mean field model of spatially-localized ex-
citatory and inhibitory currents [8]. Since then, Wilson-Cowan’s
neural field model has been studied in the context of and linked
to spatiotemporal phenomena underlying network interactions
in mammalian neocortex. In contrast to time-series models of
functional brain dynamics, the Wilson-Cowan model is grounded



Fig. 1 Problem overview. Brain dynamics is modeled as a network of Wilson-
Cowan oscillators. Excitatory rates and inhibitory rates of activity Ej(t) and
Ij(t) are observed at discrete time instants tk for each node j in the network. The
problem consists of producing estimate Â and local connectivity ĉ1,j , . . . , c1,j of
the original parameters, given the time series observations and knowledge of local
oscillator parameters {rj , τj , aj θj}.

in basic neurophysiology and incorporates fundamental prior
knowledge of the brain’s anatomic organization.
For network neuroscientists, fitting functional brain dynamics
to neurophysiologically-relevant, dynamical neural mass models
would improve interpretation of what it means for brain regions
to be functionally connected, beyond mathematical intuition.
However, a major technical challenge has been the coupled com-
plexity of the large-scale and nonlinear nature of the models.
Our method addresses these problems by applying an inverse
transformation on the dynamic equations so that the transformed
equations are linearized and become amenable to large-scale
estimation methods.
While our method requires observation of excitatory and in-
hibitory activity in neural signal recordings, made possible by
recent advancements in optogenetics [9], integrating this infor-
mation to infer brain connectivity is especially important for
diagnosing and understanding pathophysiology in brain network
disorders such as Parkinson’s, epilepsy, or schizophrenia, in
which imbalances in excitation and inhibition affect functional
connectivity [10, 11, 12, 13].

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we review the dynamic equations of the Wilson-
Cowan model and formalize the network identification as an esti-
mation problem. In our description, we adopt standard terminol-
ogy and notation1.

Networks of Wilson-Cowan oscillators

The Wilson-Cowan model [8] describes firing rate of two types of
neuronal populations in a cortical micro-column, i.e. a cylindrical

1Notation: We denote by x a column vector in Rn and by xi its i-th entry.
Bold capital letters are reserved for matrices, for instance X ∈ Rm×n, where
[X]ij denotes the entry in the i-th row and j-th column of X. An indexed vector
xi (respectively matrix Xi) denotes an element in an indexed set of vectors (re-
spectively, matrices). The n × n identity matrix is denoted by In = diag(1n),
where diag(x) is a diagonal matrix having the entries of x in its diagonal , and 1n

is the n×1 vector of ones. The vectorization operator vec(X) : Rm×n → Rmn

vertically concatenates the columns of X onto a vector x ∈ Rmn. The Frobenius
norm of a matrix is defined as ‖X‖F = (

∑m
i=1

∑n
j=1 x

2
ij)

1
2 .

portion of cortical tissue. The influence that each micro-column
exerts in the firing rate of another through synaptic coupling is
captured by network edges, which can be modeled as a weighted
additive coupling between excitatory populations [14, 15]. More
formally, for a network with n nodes, we define Ej(t) (respec-
tively Ij(t)) the proportion of excitatory (resp. inhibitory) cells at
column j = 1, . . . , n which are firing per unit time, at the instant
t. Likewise, letPj(t) (resp. Qj(t)) be the external stimulus to col-
umn j at time t (e.g. incoming from the thalamus [16]). The cou-
pling weight between node l and node j is denoted Ajl, and the
connectivity within each column is captured by the coefficients
c1,j , . . . , c4,j . The dynamical response of nodes j = 1, . . . , n is
described by a system of 2n nonlinear ordinary differential equa-
tions, as

τe,j
dEj(t)

dt
= −Ej(t) + (re,j − Ej(t))×

Se(c1,jEj(t)− c2,jIj(t) +
n∑

l=1,l 6=j

AjlEj(t) + Pj(t)), (1)

τi,j
dIj(t)

dt
= −Ij(t) + (ri,j − Ij(t))×

Si (c3,jEj(t)− c4,jIj(t) +Qj(t)) , (2)

where τe,j (resp. τi,j) are time constants, and re,j (resp. ri,j)
encode the fraction of refractory neurons available to fire associ-
ated with the excitatory (inhibitory) populations. Typical values
and the biophysical interpretation of these parameters are given
in [14]. The last element in the description is the sigmoidal func-
tion Se(x) (resp. Si(x)), which models the effect of saturation
in the firing rate of each column due to the neuronal refractory
period. It is a monotonically increasing function of x on the in-
terval (−∞,∞), attaining the asymptotic values 0 and 1 as x ap-
proaches −∞ and∞. Any function S(x) fulfilling these condi-
tions is considered a valid sigmoidal function [8]. In this work we
adopt the following definition:

S(x) :=
1

1 + e−a(x−θ)
− 1

1 + eaθ
,

where parameter a is associated with the maximum rate of the
function, and θ gives the position of the maximum slope. Note
that the subtracting term in the sum is chosen such that S(0) = 0.

Problem Statement

Addressing our problem from a signal processing standpoint, we
assume that samples of the dynamical system variables are col-
lected at regular time instants tk := kT, k = 1, . . . ,m, where
T := 1/fs is the sampling interval associated with sampling fre-
quency fs. We therefore define the data associated with the prob-
lem as
• the time series dataset T , consisting of a batch of data

samples Ej(tk) := Ej [k], Ij(tk) := Ij [k] and Pj(tk) :=
Pj [k], for samples k = 1, . . . ,m, and nodes j = 1, . . . , n.
• the set of local oscillator parameters P , consisting of val-

ues re,j , τe,j , ae,j , θe,j , (resp. ri,j , τi,j , ai,j , θi,j), for nodes
j = 1, . . . , n.

The identification of the network can now be formalized as an
estimation problem, as follows:



Problem. Given the time series dataset T and the set of oscillator
parameters P , provide estimates Âjl of the ground truth network
weights Ajl, such that the error εA(Âjl, Ajl) :=

∑n
j,l=1(Âjl −

Ajl)
2 is minimized. Additionally, provide estimates ĉ1,j , ..., ĉ4,j

of the intra-column connectivity parameters c1,j , . . . , c4,j , such
that the error εc(ĉlj , clj) :=

∑n
j=1

∑4
l=1(ĉlj−clj)2 is minimized.

The problem is illustrated in Figure 1.

III. METHOD

We start with a high-level description of the method, as follows.
In the first step, we perform an empirical estimation of the deriva-
tives of the dynamic quantities Ej(t) and Ij(t) based on their
respective time samples. Next, given these estimates and the data
associated with the problem, we apply an inverse transformation
on the dynamic equations, which allows us to obtain a set of equa-
tions that is linear in the parameters to be estimated. We then
assemble this set of equations in matrix form and propose an op-
timization problem that seeks to minimize the time series recon-
struction error over the set of allowable parameters values, i.e.,
our optimization variables. Finally, to solve the resulting opti-
mization problem, we resort to a modern algorithm that is appli-
cable to large-scale constrained convex problems. Each of these
steps is described in further detail below.

Derivative estimation

We adopt the recent approach proposed in [17] due to its optimal
statistical characteristics. It consists of a local polynomial fitting
method that achieves a consistent and minimum variance estima-
tion of the derivative by taking a weighted combination of p sym-
metric differences of the time samples. Formally, we denote the
estimates of the derivative of the excitatory and inhibitory rates
as E′j [k] := dE(tk)/dt (resp. I ′j [k] := dIj(tk)/dt). For a given
signal x[k], its first order derivative estimate x̂′[k] is defined as

x̂′[k] =

p∑
h=1

wh ·
(
x[k + h]− x[k − h]
t[k + h]− t[k − h]

)
, (3)

whose optimal weights wh [17, Appendix A] are given by

wh =
6h2

p(p+ 1)(2p+ 1)
, h = 1, . . . , p. (4)

Therefore, applying (3) to the time series dataset Ej [k] and Ij [k]
we obtain the derivative estimates Ê′j [k] and Î ′j [k] for all j =
1, . . . , n.

Inverse sigmoidal transformation

In addressing our estimation formulation, we first note the non-
linear dependency between the dynamic equation (1) and the net-
work weights Ajl through the sigmoidal function Se. This rela-
tionship would, in principle, imply a hard, nonconvex, optimiza-
tion problem to be solved in order to perform the estimation of
the parameters. Notwithstanding, as developed next, knowledge
of the observations Ej [k] and Pj [k] (resp. Ij [k] and Qj [k]), pa-
rameters τe,j and re,j (resp. τe,j and re,j), and of the derivative
estimates Ê′[k] (resp. Î ′[k]), will allow us to perform a functional
transformation yielding an estimation problem that will be linear

in the network weights and local coupling parameters. Consider-
ing the dynamic equations of the excitatory nodes (1), we intro-
duce the auxiliary inverse node dynamics data yj [k] for the exci-
tatory population, which we define as:

yj [k] := S−1e

(
τe,jÊ

′
j [k] + Ej [k]

re,j − Ej [k]

)
− Pj [k], (5)

by applying the inverse sigmoidal function S−1e (Se(x)) = x.
This inverse function is assured to exist by the monotonicity prop-
erty of Se. With yj [k], the dynamic equations, for all samples
k = 1, . . . ,m and nodes j = 1, . . . , n, can now be written as
linear equations in the network weights as

yj [k] = ĉ1,jEj [k]− ĉ2,jIj [k] +
n∑

l=1,l 6=j

AjlEj [k] (6)

which, when taking the parameters c1,j , c2,j , Ajl, Ajj := 0, will
constitute an overconstrained systems of linear equations when
the number of linear independent equations associated with the
m measurements is greater than the n + 1 parameters that are to
be estimated per node j = 1, . . . , n. Similarly, an analogous set
of linear equations can be obtained by applying an inverse sig-
moidal transformation on the set of inhibitory dynamic equations
in (2), which relate the time series dataset to the local coupling pa-
rameters c3,j and c4,j . In the following sections, we focus on the
excitatory equations and parameters, since the inhibitory counter-
part can be treated as a sub-case of the former.

Estimation of network weights

We now proceed to the main step in the identification of the net-
work, the estimation of network weights. We will use the class of
M -estimators [18], i.e., estimators that are obtained as the min-
ima of sums of functions of the data, of which least-squares esti-
mators are a special case. Introducing the estimates ĉ1,j , ĉ2,j , Âjl
associated with the parameters c1,j , c2,j , Ajl and accounting for
estimation errors δj [k], we rewrite (6) equivalently as

yj [k] = ĉ1,jEj [k]− ĉ2,jIj [k] +
n∑

l=1,l 6=j

ÂjlEj [k] + δj [k]. (7)

The mn equations defined by (7) can be put in matrix form, as
described next. We define the data matrices

Y ∈ Rn×m, [Y]il := yi[l], E ∈ Rn×m, [E]il := Ei[l],

N ∈ Rn×m, [N]il := Ii[l], ∆ ∈ Rn×m, [∆]il := δi[l],

as well as the network weights matrix Â ∈ Rn×n and the vectors
of local weights ĉ1, ĉ2 ∈ Rn. The set of mn equations can now
be compactly written as

Y = diag(ĉ1)E− diag(ĉ2)N + Â E + ∆. (8)

As mentioned previously, the estimation of these parameters can
be cast as an optimization problem. In our case, as the main opti-
mization criteria, we minimize the squared Euclidean norm of the
error matrix, i.e., ‖∆‖2F . Further, the optimization framework al-
lows us to encode additional assumptions on the network as opti-
mization objectives and constraints. For example, the assumption



of network sparsity can be included by penalizing ‖vec(Â)‖1,
which is the `1 norm of the vector containing the elements of A.
Similarly, one can also choose to penalize larger coefficients of
network weights by adding the `2 norm penalty ‖vec(Â)‖22. El-
ementwise constraints on the weight values can be also directly
encoded, such as positive and upper bounded coefficients 0 ≤
Alj ≤ Amax, or network-wide enforcement of symmetry, i.e.,
A = AT . The resulting optimization problem including these
factors can be now written in full as

minimize
ĉ1, ĉ2, Â

‖Y − Â E− diag(ĉ1)E− diag(ĉ2)N ‖2F

+ λ1
m

n
‖vec(Â)‖1 + λ2

m

n
‖vec(Â)‖22

subject to A = AT ;

0 ≤ [A]jl ≤ Amax, j, l = 1, . . . ,m;

[A]jj = 0, j = 1, . . . ,m.

(9)

where (m/n)λ1 and (m/n)λ2 are regularization parameters en-
coding the relative importance of each penalty, normalized such
that their relative importance is independent of specific values of
m and n. The optimization problem in (9) is a non-smooth con-
vex quadratic problem with linear constraints, whose solutions
yielding a minimum value can be determined efficiently [19].

Joint estimation of network weights and external inputs

Examining equation (1), we note that its dependency on the ex-
ternal stimulus Pj(t) is of the same algebraic nature as the one
associated with the network weightsAjl, i.e., a linear argument to
the sigmoidal function Se. We can, therefore, extend our method
and include Pj(t) as an estimation variable, so as to perform joint
inference of network weights and external inputs. As a possible
approach, we assume the external inputs to be constant in the pe-
riod of observation (k = 1, . . . ,m), i.e Pj(t) = pj . Therefore,
to obtain a linear regression problem, we define our inverse sig-
moidal data samples as

zj [k] := S−1e

(
τe,jÊ

′
j [k] + Ej [k]

re,j − Ej [k]

)
. (10)

By including the optimization data Z ∈ Rn×m and additional
variable p ∈ Rn, [p]i = pi, the optimization problem can be
written in matrix form as:

minimize
ĉ1, ĉ2, p̂, Â

‖Z− ÂE− diag(ĉ1)E− diag(ĉ2)N− diag(p̂)1n1
T
m ‖2F

+ λ1
l

n
‖vec(Â)‖1 + λ2

l

n
‖vec(Â)‖22

subject to A = AT ,

0 ≤ [A]jl ≤ Amax,

[Ajj ] = 0, l, j = 1, . . . ,m.
(11)

which is an optimization problem of the same type as the one in
(9), allowing for the same type of optimization algorithms.

Large-scale optimization

The solution to optimization problems in (9) and (11) can be read-
ily computed using standard quadratic solvers such as [20]. Typi-
cal problem instances, however, involve matrices of sizemn, with

Fig. 2 Derivative estimation. In (a) the noisy samples Ẽ[k], in (b) the ideal
derivatives E′[k], in (c) the estimated derivatives Ê′[k], and in (d) the difference
Ê′[k]−E′[k], all from a segment of 500 samples and a subset of 3 representative
excitatory nodes, for p = 5 and σ = 1e− 3. In (e) we present the behavior of the
empirical relative error ε(p, σ) for different noise levels σ and derivative orders p.

number of nodes n = 83 and samples m = 10 000. Given that
one might need to run repeated experiments to determine optimal
values for hyper-parameters λ1 and λ2 (i.e., compute the regu-
larization path), as well as evaluate multiple datasets, the overall
computing time taken might become a relevant factor. An effec-
tive solution is to employ proximal splitting optimization algo-
rithms, such as the Alternating Direction Method of Multipliers
[21, 22]. These methods provide gains of efficiency by allow-
ing, for example, the use of factorization caching and warm-start.
With factorization caching, the algorithm maintains intermediate
computation results in memory across iterations, such as the ma-
trix factorizations involved with the quadratic objective function.
With warm-start, intermediate results are re-used across prob-
lem instances, being applicable when the optimal regularization
hyper-parameters λ1 and λ2 are computed. By applying these al-
gorithms in our experiments, the typical type for the solution of
one problem instance decreased at least one order of magnitude,
from over 10 minutes to a few seconds, when compared to general
purpose solvers [20].

IV. COMPUTATIONAL EXPERIMENTS

We now evaluate the performance of the proposed method un-
der relevant situations. We first evaluate the derivative estimation
with respect to sensitivity to noise. Next, we apply the full method
to estimate the unknown weights of a network of 83 oscillators,
whose time series are simulated using edge weights obtained from
actual diffusion imaging measurements. Finally, we perform an
experiment where we jointly estimate network weights and the
magnitude of external input at each node.
For all simulations, the following parameters were applied. The
time series was obtained by numerically integrating the system of
differential equations for excitatory and inhibitory populations for
n = 83 using the Runge-Kutta 4th order method [23] and initial
conditions Ej(0) = 0, Ij(0) = 0, j = 1, . . . , n. The generated
times series was sampled at 5 KHz up to the final time of 2 s,
generating 10 000 samples for each node. Different levels of noise
σ were applied to the time series following a normal distribution
N (0, σIn).



Fig. 3 Recovered network. In (a) the network adjacency matrix AD used as
ground truth in our computational experiments. In (b) and (c) we plot the ad-
jacency matrices ÂD with the estimated network weights for σ = 1e − 2 (b)
and σ = 1e − 2 (c). Correspondingly, in (e) and (f) we illustrate the correla-
tion achieved in each case. In (c) we plot the correlation between original and
estimated network weights for different noise levels σ and derivative estimation
parameter p.

Derivative estimation

In this subsection, we evaluate the performance of the deriva-
tive estimation for different levels of the parameter p and noise
level σ. The experiment consists of providing a noisy time series
Ẽj [k] := Ej [k] + wj [k] with wj [k] ∼ N (0, σ) to the deriva-
tive estimation method, and evaluating the resulting error in the
derivative estimation. This error is defined as the relative Eu-
clidean norm of the difference between derivative estimate Ê′[k]
(obtained from observing the noisy time series) and the original
derivative value E′[k], which can be directly obtained from the
Wilson-Cowan equations at each time sample. The empirical rel-
ative error ε(p, σ) over all the nodes in the network is defined as

ε(p, σ) :=

√√√√∑n
j=1

∑m
k=1(Ê

′
j [k]− E′j [k])2∑n

j=1

∑m
k=1(E

′
j [k])

2
. (12)

In Figure 2 (a-d) we present, respectively, the noisy samples Ẽ[k],
the ideal derivatives E′[k], the estimated derivatives Ê′[k], and
the difference Ê′[k] − E′[k], from a segment of 500 samples
and a subset of 3 representative excitatory nodes, for p = 5 and
σ = 1e − 3. Qualitatively, by a visual comparison between (b)
and (c), one can argue that the major features of the derivative sig-
nal are being successfully captured by the derivative estimation
algorithm. Quantitatively, we summarize in (e) the behavior of
the empirical relative error ε(p, σ) for different noise levels σ and
derivative orders p. In particular, looking at the result for higher
values of p (e.g. p = 8), one can observe that higher parameter
values are preferred when estimation is performed at higher noise
levels. At lower noise levels, however, the performance for high p
values is overcome by the choice of lower values, as can be seen
for σ = 1e− 4. Such effects can be attributed to the low-pass ef-
fect of the averaging operations induced by taking higher values
of p, as described in (3).

Recovery at different noise levels

We now proceed to the evaluation of the method with regard to
its main aspect, i.e., the inference of network weights given the
observation of time series at each node. For that purpose, we gen-
erate a simulated time series of excitatory and inhibitory rates in a
system with n = 83 nodes. The underlying network weights are
derived from empirically collected measurements of the density
of white matter streamlines connecting different brain regions,
which were obtained by processing diffusion spectrum imaging
(DSI) data acquired from a healthy individual, as described in [15,
Section ‘Methods’]. The weighted adjacency matrix AD associ-
ated with the network weights is presented in Figure 3 (a), where
one can see the occurrence of a few clusters presenting higher
weight values. To perform the estimation of network weights,
we first obtained the derivative estimates Ê′j [k], adopting p = 8.
With the values of Ê′j [k], Ej [k], Ij [k], Pj [k], as well as of parame-
ters re,j and τe,j , we applied the inverse transformation described
in equation (3) to obtain yj [k] for each j and k. Given those, we
built the regression matrices Y,E and N to solve the optimiza-
tion problem in (9) and obtained the estimates Â for the network
weights. In Figure 3 (b) and (c) we plot the adjacency matrices
ÂD with the estimated network weights for σ = 1e − 2 (b) and
σ = 1e − 2 (c). Correspondingly, in (d) and (e) we illustrate the
correlation achieved in each case, by plotting the original and es-
timated edge weights for all

(
83
2

)
= 3403 values. In particular, the

correlation achieved for the lower noise value (σ = 1e− 3) is re-
markably high, as can be observed qualitatively in (b) and quanti-
tatively in (d). For the higher noise case, correlation is still signifi-
cant, and although the scatter plot in (e) presents more widespread
values, one can observe in (c) that the most prominent features of
the network, such as its overall cluster organization, have been
largely preserved. In (c) we summarize the correlation achieved
for different noise levels σ and derivative estimation parameter p.
It can be seen that higher values of the parameter p offer a better
performance at higher noise levels, whereas at low noise values,
performance is very high for all values of p considered.

Joint estimation

Lastly, we investigate the performance of the method when both
network weights and the external input magnitudes are jointly
subject to estimation. We proceeded with steps similar to those
described in the previous subsection to obtain the regression ma-
trices Z,E and N with the transformed data zj [k] being now ob-
tained according to (10). We then solved the optimization prob-
lem (11) to obtain estimates ÂD of network weights and p̂ of
the external input magnitudes. The results are presented in Fig-
ure 4, with (a) displaying the recovered network weights at noise
level σ = 1e − 3, and in (c) the corresponding scatter plot, illus-
trating the correlation level between original and estimated edge
weights. In (b) we present the original and estimated input mag-
nitude values for each node, and in (d) we illustrate their correla-
tion. The correlation level achieved in both network weights and
input magnitudes is high, confirming the analysis presented in the
corresponding Method subsection.



Fig. 4 Joint estimation with external inputs. In (a) the recovered network weights
at noise level σ = 1e − 3 is presented. In (c) the corresponding scatter plot
illustrates the correlation level between original and estimated edge weights. In
(b) we present the original and estimated input magnitude values for each node,
and in (d), their correlation.

V. CONCLUSION AND FUTURE WORK

In this study, we developed a novel method for inferring structural
brain connectivity from excitatory and inhibitory neuronal dy-
namics generated from interconnected Wilson-Cowan oscillators
–a well-reputed model of neural activity in cortical columns. In
our experiments, we simulated excitatory and inhibitory dynam-
ics on an empirically-derived structural brain network of white-
matter connections, and demonstrated that our method could ac-
curately recover structural brain connectivity in the presence of
observation noise. Although the method relies on the knowledge
of individual oscillator parameters and on the separate observa-
tion of excitatory and inhibitory rates, we believe that it presents
a principled contribution to the challenge of uncovering informa-
tion from structural brain networks underlying dynamic function.
As future work, we plan to relax the assumptions needed for the
method to be applicable to clinical electrophysiological measure-
ments. Our methodological contributions may also have transla-
tional impact in the diagnosis of brain network disorders, such as
epilepsy, in which dysfunction is driven by imbalances in excita-
tory and inhibitory neural populations.
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