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Abstract— The geometric remapping of pixel values during 
the processing of digital imagery, such as magnification, warping 
and registration, can significantly affect the final image quality.  
Many medical imaging systems include a resampler/interpolator, 
such as bicubic, as part of their processing, that acts as a variable 
low pass filter.  This not only degrades the spatial frequency 
response of the image and increases blurring, but varies the 
degradation with the fractional pixel interpolation distance.  
Thus the final modulation transfer function (MTF) of the image 
is often degraded in an almost random pattern for which 
accurate compensation cannot be applied.  This reduces image 
interpretability and degrades pixel intensity accuracy.  To 
counter this, a replacement table of interpolation kernels has 
been developed that imposes virtually the same MTF degradation 
for any pixel interpolation distance.  The inverse MTF can then 
be applied such that there is minimal MTF degradation to the 
image after interpolation.  This paper provides the latest results 
of analyses and simulations comparing the performance of the 
improved Constant MTF Interpolator (CMTF) to the cubic 
interpolator.  These results indicate that the CMTF provides 
dramatically better image quality, preserves pixel intensity 
fidelity, and enhances the placement accuracy of pixels in the 
resampled imagery more than other tested interpolators. 

Keywords—interpolation, resampling, modulation transfer 
function, MTF 

I. INTRODUCTION  
Many imaging systems geometrically remap pixels for 

warping, registration, magnification, or other purposes.  Each 
of these remappings require some form of resampling and 
interpolation to estimate values between the original pixel 
locations.  All of the techniques that are used to perform 
resampling act as low pass spatial filters with bandpasses that 
vary with interpolation distance [1][2].  This results in a 
reduction of the modulation transfer function (MTF) and 
blurring of the image that often varies in intensity from pixel 
to pixel.   

 
To counter this effect, a new interpolation technique, the 

Constant Modulation Transfer Function (CMTF) interpolator, 
has been developed with the goal of minimizing the variations 
in the low pass filter bandpasses between interpolations 
distances.  Since the filtering impact is always the same, a 
single, fixed, inverse filter can be applied to the image so that 

there will be no net blurring effect on the final, resampled 
image. 

This paper will review one of the most commonly used 
interpolation techniques, the cubic convolution, explain the 
CMTF alternative approach, and describe the differences in 
their impacts to the image MTF and their respective geometric 
accuracies.  Finally, visual comparisons are provided between 
images resampled with the two techniques.   

II. CUBIC CONVOLUTION 
The cubic convolution is one of the most common 

interpolators in use.  The kernel is created from piecewise 
cubic polynomials defined over the subintervals (-2,-1), (-1,0), 
(0,1) and (1,2) with constraints on the values and derivatives 
at the knots to ensure continuity.  This forms eight degrees of 
freedom and seven equations that result in equation (1) [3].  
The parameter, α, is the slope at x=1, and is typically assigned 
the value -0.5.  For each fractional interpolation distance the 
equation provides a four element convolution kernel.  When 
convolved with four consecutive data points/pixels, a new, 
interpolated value is provided between the second and third 
data point/pixel.     

 

ℎ 𝑥 =
𝛼 + 2 𝑥 ' − 𝛼 + 3 𝑥 * + 1				0 ≤ 𝑥 < 1
𝛼 𝑥 ' − 5𝛼 𝑥 * + 8𝛼 𝑥 − 4𝛼						1 ≤ 𝑥 < 2

0																																																			2 ≤ 𝑥
								(1) 

 
The convolution kernels can be calculated and applied 

from equation 1 for each pixel's interpolation distance on a 
pixel by pixel basis during the resampling process, or a table 
of interpolation kernels can be created once, prior to 
processing, with quantized interpolation distance increments, 
and the convolution kernel determined by a simple table 
lookup to the nearest interpolation distance.   

 
While the cubic convolution is regarded as more accurate 

than less robust interpolators such as nearest neighbor and 
linear, and it has been described as a compromise between 
accuracy and computational intensity, it exhibits the same low 
pass filtering issues as all other interpolators.  Its spatial 
frequency response varies significantly with interpolation 
distance.  The effective MTF for the cubic convolution as a 
function of interpolation distance is provided in Figure 1.  For 



most resampling processes, this results in a blurring in a 
pseudorandom manner across the image.  And because the 
blurring varies from pixel to pixel, there is no way to 
compensate for this effect without either oversharpening or 
undersharpening the image.  Therefore, the viewer will 
experience unknown losses in image detail. 

 

III. THE CONSTANT MTF INTERPOLATOR 
The Constant MTF interpolator is similar to the cubic 

convolution in many ways.  It is derived from a series of 
constraints, just as with the cubic convolution, and kernels can 
be derived for any interpolation distance.  It is constrained to 
provide an exact solution for constant, linear and quadratic 
fits.  However, unlike the cubic convolution, the kernels 
consist of six elements rather than four, the differences 
between the MTF at all frequencies for every interpolation 
distance have been minimized, and the MTF value for all 
distances at Nyquist is 0.3.    This provides two major 
advantages over other interpolators: 

 
• Because the MTF is virtually the same for all 
interpolation distances, imagery does not experience 
pseudorandom blurring from pixel to pixel. 

 
• Because the MTF never approaches zero and is 
nearly identical for all interpolation distances, a single, 
inverse filter can be applied to create an overall MTF that 
is close to one at all frequencies and effectively eliminates 
blurring caused by the interpolation process. 

IV. DERIVATION OF THE CMTF 
The goal for the derivation of the CMTF is to create an 

interpolator in the form of a set of convolution kernels such 
that the resulting MTF for any interpolation distance is 
virtually the same, and that the error in placing a perfect edge 
at the new interpolation distance is minimized. 

 

Begin by choosing the size of the kernel to be six 
elements, and then impose constraints on the form of the 
kernels to reduce the degrees of freedom and aid in finding the 
solution. 

 
The form of the interpolator as a convolution is, 
 

𝑓(𝑝) = 𝑐 𝑛, 𝑝 𝑓(𝑥:)
;
<

:=>;<?@
    (2) 

where, 
 

𝑓 𝑝 = 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑓 𝑥 	𝑎𝑡	𝑝	𝑎𝑏𝑜𝑣𝑒	𝑛 = 0 
𝑁 = 𝑠𝑖𝑧𝑒	𝑜𝑓	𝑘𝑒𝑟𝑛𝑒𝑙 = 6 
𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑝𝑜𝑖𝑛𝑡𝑠 
𝑐 𝑛, 𝑝
= 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠	𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑	𝑡𝑜	𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑝 
𝑓 𝑥 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑡𝑜	𝑏𝑒	𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 
𝑥: = 𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑥	𝑠𝑎𝑚𝑝𝑙𝑒𝑑	𝑎𝑡	𝑝𝑜𝑖𝑛𝑡	𝑛 

 
Assume that the Discrete Fourier Transform (DFT) is 

defined by, 

𝑐 𝑢, 𝑝 = 𝑐(𝑛, 𝑝)𝑒>S*TU:
;
<

:=>;<?@
   (3) 

 
where, 
 

𝑐 𝑢, 𝑝 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠	𝑜𝑓	𝐷𝐹𝑇	𝑜𝑓	𝑐(𝑛, 𝑝) 
𝑢 = 𝑠𝑝𝑎𝑡𝑖𝑎𝑙	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

 
And that the MTF is the magnitude of the DFT. 
 
        𝑀𝑇𝐹 𝑢, 𝑝 = 𝑐 𝑢, 𝑝 ∙ 𝑐∗ 𝑢, 𝑝               (4) 

 
The interpolator, which acts as a filter, shall have no gain, 

and provide a perfect interpolation value for a constant 
function.  A constant function implies no other frequency 
content except at a frequency of zero, the DC value.  
Therefore, define the DFT to have a value of one at a 
frequency of zero.   

 

𝐹 0 = 1 = 𝑐 𝑛 𝑒>S*T:×_ = 𝑐 𝑛
;
<

:=>;<?@

;
<

:=>;<?@
    (5) 

 
The sum of the coefficients of the kernel is, therefore, one. 
 
The interpolator should also ensure an exact interpolation 

solution, f(p)=mp+b, for the linear function, f(x)= mx+b.   

𝑓 𝑝 = 𝑚𝑝 + 𝑏 = 𝑐 𝑛, 𝑝 (𝑚𝑛 + 𝑏)
;
<

:=>;<?@
  (6) 

 
which becomes, 
 

𝑝 = 𝑐 𝑛, 𝑝 (𝑛)
;
<

:=>;<?@
    (7) 

 

 
Figure 1. MTF of cubic convolution for interpolation distances 0 - 1 

pixels in increments of 1/32 of a pixel. 



Just as with the linear solution, the interpolator should 
provide an exact solution for the quadratic function, 
f(p)=Ap2+ Bp+C, for the function, f(x)= Ax2+ Bx+ C.   

 
𝑓 𝑝 = 𝐴𝑝* + 𝐵𝑝 + 𝐶                          (8) 

𝐴𝑝* + 𝐵𝑝 + 𝐶 = 𝑐 𝑛, 𝑝 (𝐴𝑛* + 𝐵𝑛 + 𝐶)
;
<

:=>;<?@
       (9) 

 
By simply multiplying through by all values of n (in this 

case, -2, -1, 0, 1, 2, and 3) this simplifies to,  
 

𝑓 𝑝 = 𝑝* = 𝑐 𝑛, 𝑝 𝑛*
;
<

:=>;<?@
         (10) 

 
Finally, ensure that every kernel of the interpolator 

provides the same MTF value at Nyquist (u=0.5). 
 

𝑐 0.5, 𝑝 = 𝑐 𝑛, 𝑝 𝑒>S*T:×_.d
;
<

:=>;<?@
       (11) 

 
But since this has no imaginary components, 

 

𝑀𝑇𝐹e(𝑝) = 𝑐(𝑛, 𝑝)(−1):
;
<

:=>;<?@
      (12) 

 
At this point there are four linear constraints that can be 

written in the matrix form, 𝐴 ∗ 𝐶 = 𝐵 
 

𝐴 =

1 1 1 1 1 1
−2 −1 0 1 2 3
4 1 0 1 4 9
1 −1 1 −1 1 −1

   (13) 

 

𝐶 =

𝑐@
𝑐*
𝑐'
𝑐g
𝑐d
𝑐h

      (14) 

 

𝐵 =

1
𝑝
𝑝*

𝑀𝑇𝐹e

      (15) 

 
which provides four equations and six unknowns.  In 

theory, a search could be performed in the space of the two 
unknown coefficients for a solution that minimizes differences 
between the MTFs of the kernels and placement error.  In 
practice, however, there are many local minima that will 
provide undesirable solutions. 

 
However, a non-linear constraint can further reduce the 

solution space.   Recall that the purpose of the CMTF is to 
ensure that the resulting MTF is the same for all interpolation 

distances.  From equation (3), the DFT of the kernels can be 
rewritten in matrix form as, 

 
𝑐 𝑢, 𝑝 = 𝑐 𝑛, 𝑝 ∙ 𝑇    (16) 

 
where, 

𝑇 = 𝑚𝑎𝑡𝑟𝑖𝑥	𝑤𝑖𝑡ℎ	𝑐𝑜𝑙𝑢𝑚𝑛	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠	𝑒>S*TU >e*?@ 	 
𝑡𝑜		𝑒>STUe	𝑎𝑛𝑑	𝑢	𝑣𝑎𝑟𝑦𝑖𝑛𝑔	𝑏𝑦	𝑐𝑜𝑙𝑢𝑚𝑛 

 
In order to force the MTFs, which are the magnitudes of 

the DFT of the kernels, to be the same, impose a minimization 
constraint on the sum of the squares of the differences of the 
MTFs at all frequencies. 

 
𝑚𝑖𝑛 𝑀𝑇𝐹(𝑢S, 𝑝j) − 𝑀𝑇𝐹(𝑢S, 𝑝k)

*e
S=@jlk  (17) 

 
𝑗, 𝑘 = 𝑆𝑒𝑡	𝑜𝑓	𝑎𝑙𝑙	𝑑𝑒𝑠𝑖𝑟𝑒𝑑	𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 
𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠	𝑖𝑛	𝐷𝐹𝑇	𝑜𝑓	𝑘𝑒𝑟𝑛𝑒𝑙𝑠 

 
There are now five equations and six unknowns.  The final 

constraint is the minimization of the placement error.  
Placement error is defined as the absolute difference between 
the intended interpolation distance and the interpolation 
distance achieved when applying the interpolation kernel to an 
ideal edge (i.e. a step function such the f(x) =0 for x<0, f(x)=1 
for x≥0, sometimes called the Heaviside Function.) 

 
The Fourier Transform of the ideal edge described above 

is given by, 
 
𝐸 𝑢 = 𝐸 𝑥 𝑒>S*TUp𝑑𝑥q

>q     (18) 
 
𝐸 𝑢 = r(U)

*
+ S

*TU
     (19) 

 
The system response to applying the Fourier Transform of 

an interpolation kernel is therefore, 
 
𝑆(𝑢) = 𝐸 𝑢 𝑀𝑇𝐹 𝑢 𝑒S	s(U)    (20) 
 
where, 
 

𝑀𝑇𝐹 𝑢 = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚	𝑜𝑓	𝑡ℎ𝑒	𝑘𝑒𝑟𝑛𝑒𝑙 
𝜑 𝑢 = 𝑝ℎ𝑎𝑠𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚	𝑜𝑓	𝑡ℎ𝑒	𝑘𝑒𝑟𝑛𝑒𝑙 

 
Therefore, the position of the edge after application of the 

kernel can be written with the inverse Fourier transform as, 
 
𝐸(𝑥) = 𝐸 𝑢 𝑀𝑇𝐹 𝑢 𝑒S	s(U)𝑒S*TUp𝑑𝑢_.d

>_.d   (21) 
 
The limits are set to the width of the periodic function. 
 
After some manipulation, this becomes, 
 
𝐸 𝑥 = @

*
+ @

*T
uvw U xyz	(*TUp>s U )

U
𝑑𝑢_.d

>_.d   (22) 



The value of x in this equation that forces the integral to 
zero is the position of the interpolated edge.  Although 
unwieldy, a simple search can determine this value to several 
decimal places.  Thus the placement error is the absolute value 
of the difference of the desired placement for this kernel and 
the position determined from minimizing value of x. 

 
In order to begin a search for the CMTF kernels that meet 

these requirements, we need a starting point so that an 
exhaustive search need not be performed.  A relatively simple 
starting point is a two point filter.  The filter will have an MTF 
value of one at zero frequency, and MTFN at Nyquist.  To 
determine the MTF for this filter, we first determine the DFT 
of the filter. 

 
𝐹(𝑐 𝑛 ) = 𝑐(𝑛)𝑒>S*TU:@

:=_     (23) 
 
𝐹(𝑐 𝑛 ) = 𝑐 0 + 𝑐(1)𝑒>S*TU    (24) 
 
𝐹(𝑐 𝑛 ) = 𝑐 0 + 𝑐 1 {cos 2𝜋𝑢 − 𝑖𝑠𝑖𝑛 2𝜋𝑢 } (25) 
 
𝑀𝑇𝐹*	��* 𝑢 = 𝐹(𝑐 𝑛 )𝐹∗(𝑐 𝑛 ) = 𝑐 0 +

𝑐 1 {cos 2𝜋𝑢 − 𝑖𝑠𝑖𝑛 2𝜋𝑢 } 𝑐 0 + 𝑐 1 {cos 2𝜋𝑢 +
𝑖𝑠𝑖𝑛 2𝜋𝑢 }     (26) 

 
𝑀𝑇𝐹*	��* 𝑢 = 𝑐* 0 + 𝑐* 1 + 𝑐 0 𝑐(1) cos 2𝜋𝑢 −

𝑖𝑠𝑖𝑛 2𝜋𝑢 + 𝑐 0 𝑐(1) cos 2𝜋𝑢 + 𝑖𝑠𝑖𝑛 2𝜋𝑢   (27) 
 
𝑀𝑇𝐹*	��* 𝑢 = 𝑐* 0 + 𝑐* 1 + 2𝑐 0 𝑐(1) cos 2𝜋𝑢  (28) 
 
If we set F(c(n))=1.0 for u=0, and F(c(n))=MTFN at u=0.5 

(Nyquist), then, 
 
𝑐 0 = (@?uvw;)

*
     (29) 

 
𝑐 1 = (@>uvw;)

*
     (30) 

 
and the initial shape of the MTF curve becomes, 
 

𝑀𝑇𝐹*	��* 𝑢 = (@?uvw;)
*

*
+ (@>uvw;)

*

*
+

(@>uvw;<)
*

cos 2𝜋𝑢   (31) 
 
We can now create a six element kernel as a starting point 

for the search with N=6 and, 
 

𝑐*	�� 𝑛 = 𝑀𝑇𝐹*	��(𝑢)𝑒S*TU:
;
<

:=>;<?@
  (32) 

 
Providing this starting point and the constraints described 

above to a routine such as Matlab's fmincon results in a set of 

kernel coefficients that all provide similar MTF impacts and 
minimize the final placement errors.  Depending upon the 
initial MTF curve, the form of the non-linear constraints and 
the chosen value at Nyquist, results may be improved by 
recursively running the routine using the MTF of the output 
curves as initial MTF inputs.  

 
Figure 2 shows plots of the MTFs of the CMTF 

interpolator for selected interpolation distances both before 
and after inverse filter compensation.  Note that after 
compensation, the lowest value for any MTF and any 
interpolation distance is about 0.95, while with the cubic 
convolution, the MTF can drop to as low as zero. 

 
Figure 3 shows a comparison of the placement error for 

both the cubic convolution and the CMTF for interpolation 
distances from zero to one pixel in increments of 1/32 of a 
pixel.  Note that one of the constraints of the cubic convolution 
forces the placement error to zero at integer and half integer 
distances.  The CMTF does not use these constraints.  While 
the CMTF has a lower average placement error across all 
distances, neither method displays significant placement error. 

V. EFFECTS ON IMAGERY 
In order to provide examples of the effects of both 

convolution techniques, single slice images from cranial MRIs 
were chosen as test images.  Figure 4 shows three inset images.  
The top image is the original image.  The middle image is the 
difference between the original image and an image that was 
resampled with the cubic convolution 15/32 pixels to the right 
and down and then resampled again 15/32 to the left and up.  
The bottom image is the difference between the original image 
and an image that was resampled with the CMTF 15/32 pixels 
to the right and down and then resampled again 15/32 to the 
left and up.  Figure 6 shows similar images for a sagittal view 
with a 13/32 pixel shift in all directions.  The double 
resampling was performed to ensure that the test images were 
registered to the original image. 

The middle image in each example displays the significant 
losses in detail and edges that can be produced when 
resampling with the cubic convolution.  The lower images 
display almost no loss in detail, although some very faint edges 
may be seen.  This is because the overall MTF of CMTF is not 
exactly one at all frequencies, and a small amount of detail can 
still be lost. 

It should also be noted that since the low pass filtering 
effects of the cubic convolution are much stronger than those 
of the CMTF, the signal to noise ratio of the cubic resampled 
image will be larger, because it filters out noise with the edges.  
The image resampled with CMTF will have approximately the 
same signal to noise ratio as the original image. 

 



 

 
Figure 4: Original image (top), difference between original 

image and image interpolated with cubic convolution forward 
and backward 15/32 of a pixel in x and y directions (middle), and 

difference between original image and image interpolated with 
CMTF forward and backward 15/32 of a pixel in x and y 

directions (bottom). 

 

 
Figure 5.  Difference between images magnified 2.2X with 

cubic and CMTF 

cubic and CMTF 

 

A different example of the losses exhibited by the cubic 
convolution vs. the CMTF can be provided by magnification.  
The original Figure 4 sample image was magnified by a factor 
of 2.2 times using the cubic convolution and the CMTF.  
Magnification by a non-integer amount provides five different 
interpolation distances distributed throughout the image.  
Figure 5 shows the difference between the two magnified 
images.   Similarly, the difference between the Figure 6 image 
magnified 4.12 times with the cubic and the CMTF are shown 
in Figure 7.  Here, too, it is apparent that CMTF preserves the 
high frequency details lost by using the cubic convolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  MTF of CMTF for interpolation distances 0 - 1 pixels 

in increments of 1/32 of a pixel.  Top inset shows MTFs prior to 
compensation.  Bottom inset shows MTFs after compensation. 

 
 

Figure 3.  Placement error for cubic convolution and CMTF 



 

 
Figure 6: Original image (top), difference between original 

image and image interpolated with cubic convolution forward 
and backward 13/32 of a pixel in x and y directions (middle), and 

difference between original image and image interpolated with 
CMTF forward and backward 13/32 of a pixel in x and y 

directions (bottom). 

 

 
Figure 7.  Difference between images magnified 4.12X with 

cubic and CMTF 

cubic and CMTF 

 

VI. SUMMARY 
Current image interpolators act as low pass filters that can 

blur images in pseudorandom and uncompensatable ways.  The 
Constant MTF (CMTF) interpolator was designed to minimize 
or eliminate the low pass filtering effects and maintain 
geometric accuracy.  It was shown that the CMTF has an 
effective MTF greater than 0.95 at all frequencies, while the 
cubic convolution MTF can fall to as little as zero, and that the 
CMTF has geometric placement accuracy comparable to, and 
often better than that of the cubic convolution.  Images 
resampled with fixed interpolation distances or through 
magnification with the cubic convolution show significant loss 
of detail and edges compared to those resampled with the 
CMTF. 

Because resampling is used for so many image processing 
functions, including warping, registration, magnification and 
super resolution, the replacement of current interpolators with 
CMTF should provide significant improvements to the quality 
of images that undergo these processes. 
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