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Abstract—An inexpensive Kinect color/depth camera can be
used to give feedback to physical therapy patients. We compare
the steadiness and repeatability of finger force on a deformable
object for physical therapists given no feedback, as well as
for untrained subjects who are provided with feedback from
force sensors, or with feedback from Kinect depth, or with
no feedback. For force repeatability, it is found that untrained
subjects and physical therapists perform comparably, and that
both force feedback and depth feedback allow the untrained
subjects to achieve a given force more repeatably than the
physical therapists with no feedback. In contrast, for steadiness,
physical therapists outperform untrained subjects when neither
group has feedback. Force feedback, but not depth feedback,
makes the untrained subjects steadier than the therapists. Objects
of different deformability are also compared.

I. INTRODUCTION

Patients undergoing physical therapy typically receive in-
structions from physical therapists (PTs) in a clinic, with
printed pictures showing the correct movements. However,
once the patient is at home, maintaining motivation and
achieving the correct motion can be difficult, and compliance
rates can be low [1]–[4]. Some systems use a Microsoft
Kinect depth/color camera or other sensors to evaluate and
give feedback on whether the exercise motion is correct, which
can also help with motivation (e.g., [5]–[10]).

In addition to motion, therapy exercises often involve force
production. A patient might squeeze a ball to strengthen hand
grip, or a patient’s home caregiver might push down on the
patient’s arm while the patient raises the arm in a resisted
shoulder flexion exercise. In this work, we examine whether
Kinect depth-based feedback can help people achieve a target
force production. There is some previous work on estimating
force on an elastic object using a grayscale camera [11] or
using a depth camera [12]. We examine how well feedback
based on depth information compares to no feedback and to
force feedback in assisting untrained people to achieve a target
force or maintain a steady force. Our metrics for assessing
repeatability and steadiness come from our prior work [13],
in which we examined force feedback but not depth feedback.

II. EXPERIMENT DESIGN

A. Hand and finger segmentation

We consider the task of pushing on a sponge with the index
finger, with the hand resting on a table. A Kinect camera
is fixed about 30 inches above the table. Obtaining fingertip

depth involves segmenting the hand region and localizing the
fingertip. In [14]–[16], hand segmentation is performed by
skin color matching with YCbCr color channels. Skin color
segmentation is achieved with adaptive color matching in
[15]. In [17]–[19], hand segmentation is achieved by simply
thresholding the depth image, because in their application the
hand is up in the air and does not contact any object.

A variety of methods have been used for fingertip exact
position localization. An Adaboost classifier is used in [14],
as there is only one finger pointing up in the image. In [15],
[18], [20], k-curvature is used to find sharp outside corners
in the mask, which correspond to fingertips when the hand is
outstretched. In [17], k-means is used to cluster fingertip and
arm points. Assuming the fingertip is semicircular, [16] applies
a Circle Hough Transform after Canny edge detection, while
[21] uses template matching. In [19], a 3D geodesic shortest
path is used to locate the fingertip.

In our application, the hand and sponge are within a pre-
determined area on the table. The finger has a force sensor
which is worn like a glove tip (see Fig. 1). Within the region-
of-interest (ROI), we use k-means clustering with k = 4 for
skin, background, sponge and sensor colors, where the known
gray color of the sensor is used as one of the initial values.
Around the fingertip point in the last frame, we pick out the
largest connected component. After a binary opening operation
with a 5×5 disk template to de-noise, a convex hull operation
then finds the fingertip point as the convex hull point closest
to the fingertip point in the previous frame. The operations are
shown in Fig. 1.

B. User Interfaces

Our experiment aims to compare force repeatability and
steadiness under three conditions: no feedback, force sensor
feedback, and depth feedback. Our force sensor (fingerTPS
from Pressure Profile Systems, Inc.) is shown in Fig. 2 (left).
The GUI main window, shown in Fig. 2 (right), has a control
panel on the left, a force bar with target line in the middle,
and the real-time force curve plot on the right. The subject
watches the center bar, whose height changes with the force
feedback from the sensors.

The GUI for depth feedback is similar, with a depth bar
with target line. The height of the bar changes based on
the fingertip depth measurement, with some processing to
minimize jumping. Specifically, let dt represent the Kinect



Fig. 1. Flowchart for fingertip detection

Fig. 2. FingerTip force sensor (left) and GUI for fingertip force sensor (right)

depth measurement temporally averaged over the 5 frames
up to and including frame t and spatially averaged over the
5 × 5 pixel square around the fingertip point. To minimize
fluctuations, the displayed bar height vt+1

visual at time t + 1 is
kept unchanged unless the depth difference equals or exceeds
a threshold T :

vt+1
visual =

{
vtvisual if dt+1 − dt < T

dt+1 otherwise
(1)

where T was set to 3. The system operates at about 16 frames
per second.

C. Depth-force relation for test objects

We used two therapy sponges (North Coast Medical Inc.,
product number NC59550, pink and yellow) with different
softness. To obtain the force-depth relation curve, we collected
4 pairs of depth and force sequences for each sponge. Because
the sampling rate is different for the force sensor (40/s) and
depth camera (around 16/s), we interpolated the data pairs to
the same length of 160 points. We fit the points with a 4th
order polynomial:

force = a∗∆4
depth+b∗∆3

depth+c∗∆2
depth+d∗∆depth+e (2)

The data and fitted curves are shown in Fig. 3. For a given
depth, the force for the pink sponge is higher than that of the
yellow sponge, indicating that the pink sponge is stiffer. The
parameters of the fit are in Table I.

Fig. 3. Depth-Force mapping curves

TABLE I
PARAMETERS OF THE FIT FOR FORCE VS. DEPTH

a b c d e
Pink 1.9754e-06 2.4166e-04 -0.0090 0.1091 0.0606

Yellow 1.0593e-05 -2.0505e-04 -0.0023 0.0708 0.0380

D. Data Collection

Our subjects are of two types: untrained people, and phys-
ical therapists (PTs). Untrained subjects pressed the sponge
under three conditions: no feedback, force feedback, and depth
feedback. Under the no-feedback condition, the subject would
be asked first to press the sponge with moderate force to
establish a reference value. They would then be asked to
remember the force they used that first time and repeat it
5 times with no feedback. With force (or depth) feedback,
we set a target of the same moderate force (or corresponding
depth) that the person used for their no-feedback condition.
The subject watches the feedback bar in the GUI and tries to
make it reach and remain at the target line (corresponding to
the target force or target depth). We record 650 samples (at
40 samples per second) for each press, which is about 16s.



We used 30 untrained subjects. Subjects signed an informed
consent document and were paid $10 for their time. The test
used both the dominant and non-dominant hand (in random-
ized order). When the sensor was first put on each hand, a
sensor calibration was performed so the output force values
would be calibrated in pounds. The subject had a test run to
familiarize themselves with the GUI. For each hand, the case
of no feedback was done first to establish moderate force for
that subject, and then depth feedback and force feedback were
conducted in a randomized order.

Subjects (N=8) in the PT group were asked to press the
sponge with no feedback for each hand and each sponge.
They were not tested with feedback, since PT force steadiness
and repeatability were considered to be, for physical therapy
applications, a gold standard against which untrained subjects,
both with and without feedback, would be compared.

III. DATA ANALYSIS

The distribution of force target values used by the subjects
in the no-feedback case is shown in Fig. 4. Most of the
target values are above 1 lb, where the depth-force curves
of Fig. 3 are sensitive for depth. Example plots of measured
force vs. time are shown in Fig. 5 for the cases of no feedback
(left), force feedback (middle) and depth feedback (right). The
horizontal line is the target line that subjects try to reach. Since
it takes a few seconds to reach a stable state, we take the last
300 sample points (7.5s) in our analysis. For the case of no
feedback, we take the time average of the first press as the
target, and analyze the remaining 5 presses. So for all three
conditions, we use 5 data trails for each hand/sponge case for
each subject. We use µi (i = 1, 2, 3, 4, 5) to denote the mean
over time for the 5 trails.

Fig. 4. Distribution of force target values

A. Force Repeatability
The degree to which the mean value of one trial is close to

the mean value of another trial shows how well the subject can
remember and repeat a force value. So we use the standard
deviation from the target value of the 5 mean values as our
measurement r of repeatability:

r =

√∑5
i=1(µi − target)2

5
(3)

Fig. 5. Example curves of force vs. time

Perfect repeatability would correspond to r = 0. For the
untrained subjects, we have 120 values of r for each feedback
condition (30 subjects × 2 hands × 2 sponges), and we have
32 values for the PTs (no feedback). Fig. 6 plots these values.

Fig. 6. Repeatability data for physical therapists and untrained people

Our data is paired (data is collected from the same person
under different conditions), so we define the difference be-
tween no feedback (NF) and force feedback (FF) as D1 =
rNF − rFF between NF and depth feedback (DF) as D2 =
rNF − rDF , and between DF and FF as D3 = rDF − rFF .
To test for normality, the QQ-plots for D1, D2 and D3 are in
Fig. 7, and a Jarque-Bera test rejects the hypothesis that they
are normally distributed.

Fig. 7. QQ plot for D1, D2 and D3

We can apply a t-test because the sample size n = 120 is
large, and we can also use a non-parametric test of signifi-
cance. For all tests in this paper, we consider a significance
level of 5%. We expect that feedback is better than no
feedback, and that FF is better than DF, so we use a one-tailed
t-test with null hypothesis that the mean difference is zero,
and alternative hypothesis that the differences are positive. For
D1, D2 and D3, the mean differences are 0.164, 0.132, and
0.032 (lbs), respectively, and the null hypothesis is rejected,
with p � .001. This means that untrained subjects, with the



help of either force feedback or depth feedback, achieve better
repeatability than in the no-feedback case, and also force
feedback leads to better repeatability than depth feedback.
The non-parametric Wilcoxon signed rank test considers the
null hypothesis that median difference is zero, against the
alternative hypothesis that the median difference is positive.
For D1, D2 and D3, the median differences (lbs) are 0.136,
0.096, and 0.0268, respectively, and the null hypothesis is
rejected, with p � .001, confirming the result of the t-test.

Comparing data from untrained people and PTs, we do
not have paired data. The QQ plots are shown in Fig. 8.
The Jarque-Bera test rejects normality, so we use the non-
parametric Wilcoxon rank sum test for two independent sam-
ples. There are thee comparisons, NF and PT, FF and PT, DF
and PT. For all three, the null hypothesis for the rank sum
test is that the data come from distributions with the same
median. For NF and PT, it is a two-tailed test. Since we expect
that feedback will make untrained subjects perform better than
PTs, for FF and PT data (likewise for DF and PT), this is a
one-tailed test, with alternative hypothesis that the median for
FF (likewise for DF) is less than that for the PT data. The
test shows that with either depth feedback or force feedback,
untrained subjects are more repeatable in their finger force
production than PTs (p � 0.001). The test fails to reject the
null hypothesis when comparing PT and NF data (p ≈ 0.5) so
untrained people with no feedback are performing comparably
to PTs with no feedback. Table II lists the mean and median
values for NF, FF, DF and PT repeatability scores.

Fig. 8. QQ plot for NF, FF, DF and PT

TABLE II
MEAN AND MEDIAN VALUES OF REPEATABILITY

NF FF DF PT
mean (lbs) 0.1768 0.0124 0.0444 0.1769

median (lbs) 0.1455 0.0089 0.0368 0.1332

In comparing the two different sponges (paired data) we
use a two-tailed t-test and signed rank test, for all the data
combined (PT data, as well as data from untrained subjects
with and without feedback). We fail to reject the hypothesis
that the mean (or median) difference equals zero (p-values of
0.3239 and 0.1333). Apparently, the two different degrees of
softness are not affecting the repeatability.

B. Force Steadiness

We use σi (i = 1, 2, 3, 4, 5) to denote the standard deviation
over time for the 5 trails. Since σi gives an indication of how
steadily a person is holding the force, we use the average of the
5 σi values, denoted s, as our measure of steadiness. Perfect

steadiness would correspond to σi = 0 for all i, and so the
steadiness score s would be zero. Fig. 9 plots the steadiness
scores for the PT, NF, FF, and DF data.

Fig. 9. Steadiness data for physical therapists and untrained people

We examine the paired differences as before, defining D1 =
sNF − sFF , D2 = sNF − sDF , and D3 = sDF − sFF .
The Jarque-Bera test rejects our null hypothesis that they are
normally distributed.

When we use the t-test, because we expect that no feedback
will have worse (higher values of) steadiness than feedback,
and DF will be worse than FF, it is a one-tailed test for which
the null hypothesis is that the mean difference is zero, against
the alternative hypothesis that the mean difference is positive.
The mean differences for D1, D2, and D3 are 0.0123, 0.0023,
and 0.01. The null hypothesis is rejected for D1 and D3
with p-values � 0.001, which means that subjects produce
a more constant force when they are given force feedback,
compared to being given no feedback or depth feedback.
We fail to reject the null hypothesis for D2, with p-value
of 0.06. This means that depth feedback does not help the
subject produce a more steady force, although since the p-
value is 0.06, this is marginal in significance. The reason
why DF has no improvement in steadiness over NF may be
because the Kinect depth camera, when pointed at a motionless
sponge on the table, produces raw depth readings that fluctuate
by ±3mm. With the spatial and temporal averaging prior to
feedback display, those fluctuations were almost always within
±1mm, but occasionally may cause the subject to adjust force.
With the non-parametric Wilcoxon signed rank test, the results
were similar to those from the t-test.

In comparing with the PTs, we have unpaired data, and we
use the Wilcoxon rank sum test. In comparing NF and PT data,
from the results of [13], we expect that PTs can be steadier
than untrained subjects when nobody has any feedback, so
the null hypothesis is that the medians are equal, against the
alternative hypothesis that median(PT) < median(NF). The
null hypothesis is rejected with p=0.0026, so PTs are steadier
in finger force production.

When the untrained subjects are given force feedback, we
expect they can hold a force more steadily than PTs who have
no feedback. So the null hypothesis is that the medians are
equal against the alternative hypothesis that median(PT) >
median(FF). The null hypothesis is rejected with p=0.0088.



Finally, when untrained subjects are given depth feedback,
it is not obvious whether they will be better or worse than PTs
who have no feedback. So we use a two-tailed rank sum test.
The null hypothesis is rejected with p=0.0084. So untrained
subjects, given depth feedback, are not as steady in force
production as the PTs who have no feedback. Table III lists
the mean and median s scores for NF , FF , DF and PT .

TABLE III
MEAN AND MEDIAN STEADINESS SCORES

NF FF DF PT
mean (lbs) 0.0237 0.0114 0.0214 0.0145

median (lbs) 0.0187 0.0101 0.0185 0.0132

Lastly, in a comparison of the two sponges (paired data,
two-tailed t-test), the null hypothesis of no difference is
rejected (p � .001). For the pink sponge, the mean s value is
0.0201, whereas for the yellow sponge it is 0.0168. It is easier
to maintain steady force for the softer object.

IV. DISCUSSION AND CONCLUSIONS

Repeatability and steadiness are important in different situ-
ations. Steadiness is important for diagnosing certain illnesses,
and plays an important role in many functional activites, such
as holding a spoon with liquid, or grasping and writing with a
pen. With no feedback, physical therapists were able to hold
forces more steadily than untrained people. Our experiment
found that the depth feedback in our system did not improve
steadiness over no feedback, whereas force feedback did lead
to significant improvement.

In other applications, repeating a given force level may be
important when a patient is trying to strengthen certain mus-
cles or regain range of motion. For example, a patient squeezes
on a ball or presses on a bar on successive days at home, and
is trying to make improvements, but does not know whether
they are actually improving. After knee surgery, a patient may
sit with legs extended and a physical therapist pushes down
on the knee to help with regaining range of motion. In the
clinic, the therapist could show the patient’s spouse how to
do this. But at home, the spouse is concerned about causing
pain and is unsure whether the force being used is the same
as in the clinic. For situations like these, a system would be
useful which can assist a patient or home caregiver to achieve
the same average level of force. Our results suggest that an
inexpensive Kinect camera may help patients achieve average
force targets. Both FF and DF allowed untrained people to
be more repeatable on force than physical therapists. In this
experiment, because the person was repeating their force 5
times over immediately after setting their own reference level,
they would be most likely to remember it. In real situations,
where a day may pass between the clinic visit and the home
exercise, a person is less likely to remember the force level,
so we expect that the difference between the no-feedback case
and the feedback system could be even larger than was found
in this study.
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