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Abstract— Medical Ultrasonography is a valuable imaging 

technology for medical diagnostics and, more recently, as a 

screening alternative to mammography for women with dense 

breasts. However, ultrasound imaging within the contexts of both 

diagnostic and screening mammography suffers from inter-

operator and intra-operator variability. Consequently, there is a 

broad distribution of performance profiles, even for radiologists 

of similar training. Typically, these profiles tend to err on the side 

of caution, preferring false positive errors to false negative errors.  

While this approach may lead to a higher Cancer Detection Rate 

(CDR), it also lowers the Positive Predictive Value (PPV3) of 

performed biopsies. A lower PPV3 translates to an increase in 

benign biopsies, the annual cost of which are estimated to be on 

the order of $1 - $3 billion USD (not including pathological 

workups). And, of course, there is the immeasurable cost of pain, 

worry, and suffering borne by women undergoing these 

potentially unnecessary procedures. In this paper, we evaluate the 

ability of the ClearView cCAD algorithms to increase overall 

performance and reduce the inter-operator variance on a set of 

imaged lesions. The cCAD system provides an automated 

assessment of some ACR BI-RADs criteria and calculates a 

preliminary BI-RADs assessment, given as BI-RADS categorical 

bucket (1-3) or (4-5). Through the evaluation of 1300 breast lesion 

images, 3 MQSA certified radiologists were asked to determine 

both a Likelihood of Malignancy (LoM) and a BI-RADs 

assessment, from which their ROC curve AUC as well as PPV3 

could be calculated. The cCAD system was also evaluated, on the 

same set of lesions, by a similar set of metrics.  From this analysis 

we have been able to show that the cCAD system outperforms 

radiologists at all operating points within the scope of this study 

design. Furthermore, we’ve shown that through simple fusion 

schemes we are able to increase performance beyond that of either 

the cCAD system or the radiologist alone by all typically tracked 

quality metrics, and significantly reduce inter-operator variance. 
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I. INTRODUCTION  

 Breast cancer screening and, subsequently, diagnostic 
workflows generally exhaust the initial modality and eventually 
move onto to an ultrasound evaluation of the area in question 
[1]. This workflow is followed when there are suspicious non-
imaging findings or the initial screening mammogram shows 
that the breast tissue is dense.  It has been shown that typical 
screening mammography can fail to detect 20-30% of breast 
lesions, 60-70% of which are visible on retrospective evaluation. 
These results are particularly striking as most clinicians err on 

the side of caution, leading to a much higher benign biopsy rate 
and consequently lower Positive Predictive Value (PPV3) for 
biopsies. According to the National Mammography Database, 
over 70% of all biopsies come back benign [2] with an estimated 
annual utilization of 984,000 biopsies per year. [3] According to 
Burkhardt and Sunshine [4], the average billed costs of a 
surgical and core biopsy are $3764 and $1496, respectively. The 
resulting annual cost ranges from $1.47 to $3.7 billion, if you 
don’t include the necessary pathological workup. In addition, a 
recent study [5] has found that on average breast biopsies burden 
patients with an additional $310 in out-of-pocket costs. This 
costly combination of false positive and false negative error 
rates has motivated researchers to develop computer aided 
detection (CADe) and computer aided diagnosis (CADx) 
algorithms [6-11]. Although several CAD tools are available for 
clinical use, their benefits have been called into question, with 
some studies suggesting they offer no benefit whatsoever [12]. 

 The current state of CAD technology, offering dubious 
benefit to mammography, and offering no benefit at all to 
ultrasound, seems to indicate that a paradigm shift in the 
utilization of intelligent medical algorithms is necessary. 
Recently, ClearView Diagnostics Inc. (CDI) released a new 
product, cCAD (awaiting FDA clearance: K161959), aimed at 
improving the overall diagnostic quality of breast lesion analysis 
through automated reporting of lesion parameters. In this paper, 
we explore a novel application of their underlying algorithms as 
a decision support system aimed at providing support feedback 
to the clinician, instead of an independent CAD assessment. We 
will explore raw performance metrics of the cCAD system from 
a traditional CAD standpoint, as well as various fusion schemes 
with clinician grading for utilization in a decision support 
system.  This paper will examine if any improvement in 
performance or reduction in inter-operator variability is possible 
through this new application paradigm.  

II. CAD VERSUS DECISION SUPPPORT SYSTEMS 

 
 It is important to illuminate the distinction between 
Computer-Aided Detection/Computer-Aided Diagnosis and 
Decision Support Systems. Although the underlying image 
analysis approaches share some methods and similarities, the 
intent and utilization of these two systems draws a clear 
distinction between them. CAD systems are traditionally 
independent image analysis pipelines aimed at providing an 
independent assessment of an image, lesion, or region of 
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interest. In effect, they are used as a second opinion in place of, 
or as an adjunct to, a second reader. This type of utilization is 
useful when there is significant inter-operator variability or a 
relative dearth of trained personnel that can perform and 
interpret examinations.  

 In contrast, decision support systems aim to establish a 
human-machine interface that benefits both the Artificial 
Intelligence (AI) platform and the trained reader through a 
process termed symbiotic learning. In this framework, 
recommendations are passed between the two systems in a 
bidirectional fashion, in order to facilitate optimal performance 
by the joint human-AI system. The system can be viewed as 
coupling the human’s decision making pipeline to the AI’s, so 
as to make a single accurate and consistent decision. 

III. STUDY DESIGN 

 To evaluate the performance of the cCAD system as a 
traditional CAD system, as well as its utility in a Decision 
Support System, a large database of lesions was aggregated. 
These lesions were, in part, made of ACRIN 6666 study lesions 
[13] in addition to internal studies conducted by CDI. This 
database consisted of over 1300 individual images and included 
680 individual lesions. This dataset contained 600 cancers and 
700 benign examples when counted by image, or 298 cancers 
and 382 benign examples when counted by lesion. The ground 
truth for all these lesions was established by biopsy or 1-year 
follow-up with initial BI-RADs (Breast Imaging and Reporting 
Data System) assessments distributed as seen in Figure 1.  

 

 Three MQSA certified radiologists, as described in Table 1, 
were asked to evaluate all 1300 images on an image by image 
basis and assess both the Likelihood of Malignancy (LoM) and 
the preliminary BI-RADs assessment. The reading radiologists 
would typically be privy to a host of other information, including 
patient history and previous imaging studies. For the purposes 
of this study, that information was not presented. This decision 
was made in order to isolate and compare the image reading 

capacity of the cCAD system and the radiologist while avoiding 
potential confounding from external information.  

Table 1 Radiologists included in study. 

Radiologist MQSA 

Certified 

Years of 

Experience 

Annual 

Cases 

Read 

Rad 1 X  20+ 18605 

Rad 2 X  20+ 8060 

Rad 3 X  10 7201 

 

 Each radiologist was given a unique login and asked to 
assess each of the 1300 images per the interface seen in Figure 
2. 

The radiologist was presented with the full ultrasound image. 
The viewer included controls to adjust zoom, gain, and contrast. 
Additionally, they were given the option to toggle an ROI 
overlay on the image. This was done so that the assessment was 
purely of their diagnostic ability, and unaffected by potential 
difficulties in locating the lesion within an image. When 
presented with a lesion, the radiologist filled out and submitted 
the accompanying form describing their assessment of its shape, 
orientation, likelihood of malignancy, and BIRADS category. 
Upon submitting a lesion, the radiologist was no longer allowed 
to return to or edit their interpretation of it. This process was 
continued until each radiologist finished evaluating each of the 
1300 lesions. So as to ensure that neither fatigue nor urgency 
played a role in their decision making process, the radiologists 
were given a period of weeks over which to complete these 
assessments.  

 Upon the completion of the radiologists’ assessments, the 
same protocol is followed by the cCAD system; each ROI in 
each image is fed through the system and a BI-RADS bucket 

 
Figure 1 - BI-RADS Distribution by image for data included in study. BI-

RADS grading of 0 denotes that explicit BI-RADS score was not known. 

 

 
Figure 2 Study assessment tool 

 



assessment as well as its confidence in that assessment is 
recorded. To facilitate the comparison, in this paper the 
confidence for a BI-RADs bucket is interpreted as a proxy 
measure of Likelihood of Malignancy (LoM) for the cCAD 
system. It is important to note, however, that the cCAD system 
has made no claims as to the validity of this interpretation, and 
its indications for use are explicitly reserved for aiding in the 
compliance of the BI-RADS ultrasound lexicon form. 

 

IV. RESULTS 

 For the initial analysis, we simply compare the results of 

the three radiologists’ LoM, evaluated using Receiver 

Operating Characteristic (ROC) curves. These curves 

compared to the output of the LoM equivalent provided by the 

cCAD system. Area Under the Curve (AUC) is calculated for 

each radiologist and the cCAD system using a simple 

trapezoidal rule approximation. It is interesting to note that, 

although the radiologists were not given specific criteria for 

how to grade LoM, the likelihood estimates they gave were still 

coarsely quantized. This is evident from the linear regions of 

the ROC curve, which are separated by coarse jumps between 

likelihood thresholds. The curves and their respective AUCs are 

shown in Figure 3. 

 

 

From the results in Figure 3, it is clear that cCAD 

independently outperforms the radiologists in the assessment 

of LoM within the study protocol and its parameters. 

 

Since the goal of this paper was to establish whether or not AI, 

statistical methodologies, and machine learning can be used to 

augment the decision making pipeline of the physician we 

have analyzed the results of the cCAD and radiologist system 

as if they were a single pipeline. In its most simple rendition, 

we evaluate a derivative score as one where both the cCAD 

result and the clinician’s evaluation are treated as equal 

weighted estimates of the LoM, offering support to one 

another. To generate the final output one would simply define 

the score as the equal weighted mean of the N outputs where 

these outputs can be defined as independent clinical 

evaluations, the cCAD evaluation, or any other method of 

evaluating the LoM for a particular lesion 

 Ss1s2s3n sn 
n = 1/N 

 Taking this approach and analyzing the statistics of 

aggregate performance parameters for each radiologists, we 

can assess the benefit of the fusion scheme on clinical 

parameters. Since the operating point of the cCAD system, the 

radiologists, and their fused scores lie on a continuum, there 

are many possible operating points to analyze. Here, we offer 

MQSA tracked statistics for two such points: 

 

1. Fixed Sensitivity to the Radiologists performance 

prior to fusion (Table 2) 

2. Fixed Specificity to the Radiologists performance 

prior to fusion (Table 3) 

 

In both Table 2 and Table 3 we reference a new statistic, called 

the Benign Biopsy Reduction (BBR), which is defined as the 

percent reduction in number of benign lesions that were 

originally sent to biopsy. For example, if four lesions were 

originally sent to biopsy and one of these lesions is eliminated 

by the new fusion technique, we would report a BBR of 25%. 

These values are obviously sensitivity dependent and, as such, 

should always be analyzed with an equivalent sensitivity and 

specificity (or derivative) metric.  

 

 
Table 2 Performance shifts when sensitivity is fixed to original 

radiologists' sensitivity 

Radiologist Benign 

Biopsy 

Reduction 

ΔPPV
3
  Δsensitivity 

Rad 1 34.09%  7.31% 0% 

Rad 2 47.60%  19.54% 0% 

Rad 3 55.40%  20.26% 0% 

 
Table 3 Performance shifts when sensitivity is fixed to original 

radiologists' specificity  

Radiologist Benign 

Biopsy 

Reduction 

ΔPPV
3
  Δsensitivity 

Rad 1 25.00%  0.57% 1.33% 

Rad 2 25.48%  1.41% 3.17% 

Rad 3 31.02% 2.04 % 4.83% 

 

 

Furthermore, in Figure 4, a clear and emergent benefit to both 

the sensitivity and specificity metrics is visible. This figure, 

which compares the sensitivity and specificity of each 

radiologist before and after fusion, brings to light another 

benefit of the decision support system. In addition to the 

consistent improvements in sensitivity, specificity, and MQSA 

 
Figure 3 ROC Analysis comparing radiologists to raw cCAD 

performance 

 



tracked metrics, the fused results demonstrate an overall 

reduction in inter-operator variability.  

  

In order to verify this observation, we perform an unweighted 

Cohen Kappa [14-16] analysis to each pair of radiologists with 

and without decision support from the cCAD software. The 

results are summarized in Tables 4 and 5 below: 

 

Table 4 Unweighted Cohen Kappa analysis for original 

radiologist LoM (p = .05) 

Unweighted 
Cohen Kappa 

Without CDI Decision Support 

Rad 1 Rad 2 Rad 3 

Rad 1 1.00 0.67  
[.62 - .72] 

0.61  
[.55 - .66] 

Rad 2 0.67 

 [.62 - .72] 
1.00 0.61 

 [.56 - .66] 

Rad 3 0.61  
[.55 - .66] 

0.61  
[.56 - .66] 

1.00 

 

Table 5 Unweighted Cohen Kappa analysis for LoM with 

cCAD Decision Support (p = .05) 

Unweighted 
Cohen Kappa 

With CDI Decision Support 

Rad 1 Rad 2 Rad 3 

Rad 1 1.00 0.89  
[ .86 - .92] 

0.90  
[.88 - .93] 

Rad 2 0.89  
[ .86 - .92] 

1.00 0.91  
[.87 -. 94] 

Rad 3 0.90  
[.88 - .93] 

0.91  
[.87 -. 94] 

1.00 

 

There is a clear and statistically significant improvement in 
Kappa that occurs alongside the improvements in quality 
metrics. This suggests that the fusion system is, in fact, 

decreasing inter-operator variability while simultaneously 
improving diagnostic quality. 

CONCLUSION 

We have investigated the efficacy of adjoining clinical 
workflows and CDI’s cCAD platform into a decision support 
system. This framework has measurably increased MQSA 
tracked quality metrics such as sensitivity and PPV3. Concurrent 
with the performance improvement, the cCAD’s influence on 
the combined decision has the added effect of reducing inter-
operator variability, which suggests the potential for boosting 
both reliability and consistency in those decisions.  
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Figure 4 Operating point shifts for a fixed specificity system. 
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