
  

  

 
Abstract—Physiological monitoring is prone to artifacts 

originating from various sources such as motion, device 
malfunction, and interference. The artifact occurrence not only 
elevates false alarm rates in clinics but also complicates data 
analysis in research. When techniques to characterize signal 
dynamics and the underlying physiology are applied (e.g., heart 
rate variability), noise and artifacts can produce misleading 
results that describe the signal artifacts more than the 
physiology. Signal quality metrics can be applied to identify 
signal segments with noise and artifacts that would otherwise 
lead analyses to produce non-physiologic or misleading results.  
In this study we utilized simulated electrocardiogram signals 
and artifacts to demonstrate effects of noise on heart rate 
variability frequency domain methods. We then used these 
simulations to assess an automated artifact correction algorithm 
that included a signal quality index comparing 
electrocardiogram beats to a beat template. Simulation results 
show that the proposed algorithm can significantly improve 
estimation of signal spectra in presence of various artifacts. This 
algorithm can be applied to automatically clean real world 
physiological time series before conducting variability analysis. 

I. INTRODUCTION 

       Continuous recording of physiological waveforms such 
as arterial blood pressure (ABP) and electrocardiogram 
(ECG) are affected by noise and motion artifacts (e.g., Fig. 1 
shows real-world examples of signal artifacts from 
experimental studies with conscious animals). Physiological 
signals are desired to be clean and free from artifacts in 
clinical monitoring as well as computerized data analysis. 
Measurements spoiled by artifacts can lead to false alarms 
during recording, misinterpretation in diagnosis and therapy, 
and misleading results during offline analyses. Frequency 
analysis of physiological time series (e.g., ECG or ABP) is a 
widely used technique for identifying biomarkers or 
investigating responses to interventions in a physiological 
system. For example, autonomic neuropathy due to 
complications of diabetes mellitus has been shown to reduce 
power in all spectral bands with unchanged low to high 
frequency power ratio on RR tachogram power spectrum [1]. 
However, precise estimation of power spectra entails a 
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continuous and clean signal as an input. Generally, artifacts 
are prevalent in clinical and experimental recordings (see 
Fig. 1) and techniques to automatically identify and mitigate 
effects of them from the analysis are being developed. Even 
short artifact incidences impose significant edge effects on 
power spectrum estimation, particularly in lower frequency 
bands (low: 0.04 – 0.15 Hz and very low: 0.003 – 0.04 Hz 
frequency bands on RR tachogram power spectrum). Signal 
quality metrics can be applied to identify segments affected 
by noise and artifacts and then excluding, or adjusting the 
analysis appropriately. In beat-to-beat signal quality 
assessment, where individual beats with poor quality are 
excluded based on waveform detection features, variability 
analysis may still benefit from techniques such as 
interpolation. However, a continuous index of signal quality 
is required to identify prolonged or repeated artifacts. In this 
case,  excluding affected data points from the original signal 
will leave large gaps on time series which can challenge the 
interpretation of relatively slow rhythms in variability 
analysis. Simulating physiological signals using credible 
models is an effective approach to evaluate signal processing 
techniques [2]. In the context of signal quality assessment 
simulations become even  more beneficial becuase  signals 
can be synthesized with specified characteristics to provide a 
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Figure 1. Examples of electrocardiogram (in black on left column) 
and arterial blood pressure (in blue on right column) signals recorded 
from adult sheep in presence of artifacts. Artifacts have various 
morphologies and occur at random time incidences. 

 

 



  

known ground truth for better assessment of noise 
cancellation algorithms. In addition, artifacts can be modeled 
and  injected to the signal  in a controlled and quantifiable 
way to simulate a variety of desired noise insidences.   

Here, we propose to assess physiological variability 
analysis algorithms that incorporate automated detection and 
correction of signal noise artifacts using simulated 
physiological waveforms corrupted with simulated artifacts. 
The set of simulated signals enables us to have a ground 
truth with known variability parameters and locations of 
artifacts. We then demonstrate the use of the simulated 
signals by applying a signal quality index (SQI) that 
compares ECG beats to a beat template as an automated 
artifact detection method. Heart rate variability results from 
the set of simulated signals are presented with and without 
use of the SQI. 
 

II. FRAMEWORK 

A.  Signal and artifact models      

   A nonlinear dynamical model based on differential 
equations was used to generate realistic ECG signals [2]. A 
three dimensional state-space is constructed using three 
coupled ordinary differential equations and ECG dynamics 
are modeled as a trajectory in the 3D space. This model 
replicates important characteristics of a clinical ECG by 
specifying parameters including mean and standard deviation 
of heart rate, noise level, morphology of PQRST cycle and 
power spectrum of RR tachogram. Hence, it provides a 
completely known ECG signal for assessment of different 
biomedical signal processing algorithms [3]. Although this 
model is capable of producing other waveforms such as 
blood pressure and respiration signals, we focused on ECG 
simulations.  

Once an artificial ECG with indicated clinical relevance is 
produced, artifacts can be added in a quantifiable and 
customized way to imitate realistic scenarios. Fig. 1 shows 
example artifacts from experimental recordings in sheep. As 
shown, artifacts are random and nonstationary and can 
significantly affect the estimation of features from the 
underlying signal. In this paper, standard models of ABP 
artifacts proposed and implemented elsewhere [3] were used 
with slight modifications to create generic types of artifacts 
for ECGs. These artifacts were first identified after extensive 
investigation through a multi-parameter physiological signal 
database and then modeled mathematically so that the 
physiological relevance and similarity are preserved [3]. 
Although these models were developed for ABP, most were 
also applicable to ECG with minimal modification on 
mathematical parameters.  For example, high-frequency and 
transient low-frequency ECG noises (Fig. 2 d and f) could be 
due to motion artifacts and are simulated and added to the 
original signal using altered (gain adjusted for ECG 
physiologic range) brown noise and sinc functions, 
respectively. The artifact models can also be merged with 
each other to generate new artifacts. These artifacts were 

injected into the simulated ECG signal at random time 
instances with variable durations (5% to 70%). Fig. 2 

 

 

Figure 3. Automated artifact removal and PSD estimation 
algorithm in four steps: a) Artifact-free ECG segment which was 
used to construct the template beat and the constructed template 
beat; b) ECG segment with artifacts injected to it, SQI calculated by 
adaptive matching with template beat and RR tachogram for the 
ECG segment; c) RR tachogram for the ECG segment after artifacts 
are removed using SQI and d) PSD estimated using Lomb-Scargle 
periodogram algorithm for RR tachograms from artifact free ECG 
segment, ECG segment with artifacts injected and ECG segment 
after artifact removal .  

 

 
Figure 2. (a) A simulated ECG signal. Simulated ECG signal in (a) 
with injected artifacts: (b) signal attenuation, (c) high-amplitude 
square wave, (d) high-frequency noise, (e) abrupt change in DC 
offset, (f) transient low-frequency noise, (g) exponential saturation, 
and (h) exponential saturation with high-frequency noise. 

 



  

illustrates a simulated ECG signal along with seven types of 
artificial noise mathematically modeled and added to the 
original signal. Simulated artifacts include signal attenuation, 
high-amplitude square wave, high frequency noise, abrupt 
change in DC offset, transient low frequency noise, 
exponential saturation and exponential saturation with high 
frequency noise (Fig. 2 b-h).  
 
B. Artifact correction and spectral estimation algorithm 

Direct estimation of heart rate (HR) from corrupted ECGs 
will result in unwanted noise in HRV, particularly for 
spectral features. Hence, it deems necessary to automatically 
remove such artifacts and estimate spectra from the corrected 
signal. We propose a stepwise framework for artifact 
correction and PSD estimation of RR tachograms. As the 
first step, a relatively short segment of artifact free ECG 
signal is chosen by visual inspection. R wave locations are 
then identified in the selected segment using an automated 
QRS detection algorithm [4]. A template beat is constructed 
by taking the median of all the beats in the segment (Fig. 3a). 
Next, we apply the same QRS detection algorithm to a 
simulated ECG signal with injected artifacts to generate the 
RR tachogram. With the help of the template waveform 
generated in the previous step, a signal quality assessment 
based on a matched filter strategy is applied. The correlation 
coefficient between each detected beat on ECG with artifacts 
and the template beat is calculated and used as a signal 
quality index (SQI) [5]. The computed SQI is passed through 
a signal conditioning step including a sequence of median 
and moving average filters to remove abrupt changes and 
provide a smooth indicator of signal quality. As can be seen 
from Fig. 3b, SQI has a bimodal distribution and falls 
sharply when artifacts are present in the ECG waveform. As 
the third step, we have empirically set a threshold on SQI by 
qualitative review of waveforms. The threshold was chosen 
conservatively low (here 0.4) to identify and remove 
majority (if not all) of corrupted data points from RR 
tachogram (Fig. 3c). Applying the artifact removal algorithm 
produces discontinuities in the signal. Estimation of PSD 
based on Fourier analysis techniques suffers from periodic 
noise in gapped signals. However, a modified version of 
periodogram named Lomb-Scargle alleviates such 
limitations. Lomb-Scargle algorithm estimates sine and 
cosine functions from unevenly sampled time series in each 
desired frequency and makes them orthogonal by time 
shifting before computing power [6]. As the last step of our 
algorithm, we compute PSD from artifact removed RR 
tachogram using this technique (Fig. 3d) and compute the 
area under the power spectrum to estimate power in different 
frequency bands: very low frequency (VLF, <0.04 Hz), low 
frequency (LF, 0.04 – 0.15 Hz), and high frequency (HF, 
0.15 to 0.4 Hz).  
 

III. SIMULATION 

Three simulation trials were performed to generate ECG 
signals with predefined constant (duration = 60 mins, HR = 

70±10 beats per minute [bpm]) and variable (LF/HF power 
ratio = 0.5,1 and 2) parameters from the dynamical model 
[2]. Different types of artifacts shown in Fig. 2 were then 
simulated with random durations (to occupy 5-70% of the 
ECG signal) and added to each original ECG at random 
locations. Produced signals were passed through different 
stages of the artifact correction algorithm and normalized 
power in each frequency band was estimated from original, 
with artifacts and artifact removed ECG signals (Fig. 4). 

IV. RESULTS 

    Fig. 4 summarizes the simulation results. Each row 
represents a simulated ECG with specified LF/HF power 
ratio and each column is related to one of three spectral 
power bands. Reference values for each spectral feature 
(normalized signal power) are shown as black dashed lines 
which are constant for VLF and variable for LF and HF 
depending on predefined features of simulated ECGs. Blue 
and red solid lines represent normalized power in each 
frequency band for signal with artifacts and artifact removed 
signals, respectively. To evaluate the performance of the 
proposed algorithm in presence of different amount of 
artifacts, we increasingly added artifact to the signal up to 
70% of its total duration. Trends show mean and standard 
error for five different artifact types with respect to 
augmenting artifacts. PSD did not significantly change when 
ECG signal was injected with artifact types: abrupt change in 
DC offset (Fig. 2e) and transient low-frequency artifacts 
(Fig. 2f). Selected QRS detection algorithm [4] was 
sufficiently robust to locate R waves in presence of these two 
artifact types. Hence, we excluded them from the average 
results and only show trends for the other five artifacts. Fig. 
4 shows to what extent gaps can be imposed to RR 

 
Figure 4. Comparison of power spectral features between original signal 
(black dashed), signal with artifact (blue) and artifact removed signal 
(red) for three different simulation trials. The average estimation of PSD 
features from n=5 types of artifacts is not significantly different from the 
reference values. Two artifact types (Fig. 2e and f) were excluded from 
results because they did not affect QRS detection and consequently 
power spectral feature estimations.  

 
 

 



  

tachogram and still obtain reasonably accurate estimation of 
PSD. Average trends are similar for three simulation trials 
(LF/HF power ratio = 0.5, 1 and 2). In general, there is 
significant overestimation of VLF power in noisy ECG 
(blue), while we observe an underestimation in LF and HF 
power. This error is large for all amounts of artifacts in three 
of the simulated trials. However, the error has been 
reasonably alleviated after applying the SQI algorithm in 
most cases. For artifact removed signals, spectral features 
become similar to the ones from original signal when the 
artifact duration is less than 30-40% of the total signal 
duration. Although the performance is not acceptable when 
the artifact duration is more than 30-40% of total signal 
duration, we still observe better estimations after applying 
the SQI algorithm than from the original signal corrupted 
with artifact.  

V.  DISCUSSION 

        Electrocardiogram and arterial blood pressure 
waveforms are two essential physiological measurements in 
patient hemodynamic monitoring. Variability analysis (e.g. 
heart rate variability or pulse pressure variability) can be 
performed along with vital signs (e.g. heart rate and blood 
pressure) to assess the physiological status of the patient or 
response to a given therapy [7]. Heart rate variability is a 
noninvasive index of autonomic nervous function in 
cardiovascular system unveiling vagal-sympathetic balance 
under different physiological and pathophysiological 
circumstances [1]. For example, it has been shown to be 
altered during the progression of sepsis in a porcine model 
[8]. Spectral analysis of RR tachogram to assess heart rate 
variability requires artifact free ECG signals.  

       Signal quality assessment becomes more critical in 
multi-parameter physiological monitoring in which multiple 
waveforms from different modalities are being combined and 
analyzed together for identifying better biomarkers of 
physiological status. In experimental monitoring using large 
and conscious animal models, the reduced signal quality 
could affect research findings if not appropriately accounted 
for. It is not only difficult to restrain animal and suppress 
activity, but also challenging to simultaneously record from 
several sensors connected to a freely moving animal. While 
Fig. 1 demonstrates example artifacts during physiological 

monitoring in sheep, it does not cover all morphological 
varieties.  

    In Fig. 5 we illustrate a real example of spectrogram of an 
RR tachogram with portions corrupted by artifacts. A 60 min 
ECG signal recorded form an adult sheep [collected during a 
study approved by the Institutional Animal Care and Use 
Committee at the University of Texas Medical Branch 
following guidelines for the use of laboratory animals from 
the National Institutes of Health and the American 
Physiological Society] was preprocessed, R wave locations 
were detected, and HR sequence was generated by 
interpolating RR intervals. Time-frequency representation of 
the HR sequence is shown in Fig 5b. There are repetitive 
funnel-shaped patterns on the spectrogram corresponding to 
artifacts on ECG. Depending on the artifact type, the effect 
on spectrogram could be different. However, even short 
artifacts on the ECG result in significant error in HR 
estimation and impose wide overestimation on power 
spectrum. The spectrum noise cannot be directly filtered 
from the spectrogram because the affected portion becomes 
wider in lower frequencies (VLF and LF) comprising 
invaluable information about sympathetic modulations.  

    Signal quality assessment is a necessity prior to variability 
analyses like HRV and several techniques have been 
proposed for automated detection of ECG artifacts [9]. The 
main focus of these approaches has been assessment of beat-
to-beat signal quality in continuous patient monitoring to 
alleviate alarm fatigue [10] or adverse events [11] problems 
in clinical care monitoring. However, offline data analysis in 
research applications can greatly benefit from similar noise 
cancellation algorithms [12-13]. In this paper we simulated 
different artifacts on ECG and evaluated the performance of 
an automated artifact correction framework for accurate 
estimation of PSD of RR tachogram. The mathematical 
models have previously been utilized to assess biomedical 
signal processing techniques [2]. Simulating signals and 
artifacts using mathematical models allowed us to 
manipulate different scenarios under specific conditions and 
assess limitations of our framework. Since the dynamic 
model for ECG is more physiologically relevant than ABP, 
we proposed and tested our automated artifact correction 
algorithm using simulated ECGs. Fig. 2 represents common 
types of ECG artifacts obtained by simple modifications on 
the available ABP artifact models [3]. Since the main goal of 
this study was to evaluate the proposed framework using a 
sample set of ECG artifacts, we did not produce all possible 
artifact events. However, available models can be further 
adapted and evolved to generate other forms of ECG 
artifacts. After waveform simulation, we applied available R 
wave detection algorithms and picked the ones performing 
more efficiently in presence of artifacts [4]. The template 
matching algorithm used in this paper has been shown to be 
an effective SQI for ECG [9]. The detection threshold was 
set low enough to maximize sensitivity of our algorithm for 
detecting modeled artifacts shown in Fig. 2. Hence, 
specificity may not be high, however given the performance 
assessment presented in Fig. 4 it does not affect PSD 
estimation significantly. Although we did not optimize SQI 
based detection and applied an ad hoc threshold, it 
performed reasonably well. Refining the SQI cut off (e.g., 

 
Figure 5. Artifact occurrence burdens significant noise in a wide 
frequency range of HRV. a) An experimental ECG recording (blue) 
and its HR tachogram (brown). b)  spectrogram of the HR tachogram.  
Funnel shaped patterns are present on the spectrogram corresponding 
to artifacts on ECG, particularly in lower frequency bands. 



  

through ROC analysis) should be done to optimize and fully 
automate the detection algorithm. 

     Assessment of heart rate variability with frequency 
domain metrics particularly in prolonged recordings with 
higher artifact incidences requires a robust PSD estimation 
algorithm. Following automated artifact detection and 
removal, we applied Lomb-Scargle periodogram algorithm 
to estimate spectral features from our artifact removed RR 
tachogram. According to our results (Fig. 4), this PSD 
estimation algorithm requires at least 60-70% of ECG data to 
have an accurate estimation of spectral features. 
Nevertheless, estimation of these features, especially HF, is 
roughly close to reference values when the artifact 
occurrence is more than 30-40% of the signal. This means, 
given a reasonable artifact incidence rate in the signal, 
artifact detection specificity is not as critical as sensitivity 
and we can leverage the artifact detection threshold 
progressively to assure that total portion of the corrupted 
signal is removed. The performance is independent from the 
intrinsic features of the signal (e.g. LF/HF power ratio) and 
works fairly well under different physiological conditions.  

VI.  CONCLUSIONS 
        Here we implemented and tested a heart rate variability 
analysis framework using simulated ECG signals. The same 
framework is applicable to other physiological waveforms. 
For example ABP has a unique morphology that easily 
deviates from baseline with artifacts. The algorithm was only 
assessed for HRV frequency domain analysis, while 
assessment of other HRV analyses such as time domain or 
nonlinear in presence of artifacts can benefit similarly.  
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