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Abstract—This paper proposes a parametric model for sac-
cadic waveforms. The model has a small number of parameters,
yet it effectively simulates a variety of physiologic saccade
properties. In particular, the model reproduces the established
relationship between peak saccadic angular velocity and saccadic
amplitude (i.e., the saccadic main sequence). The proposed
saccadic waveform model can be used in the evaluation and
validation of methods for quantitative saccade analysis. For
example, we use the proposed saccade model to evaluate four
well-known saccade detection algorithms. The comparison indi-
cates the most reliable algorithm is one by Nystrom et al. We
further use the proposed saccade model to evaluate the standard
technique used for the estimation of peak saccadic angular
velocity. The evaluation shows the occurrence of systematic
errors. We thus suggest that saccadic angular velocity values
determined by the standard technique (low-pass differentiation)
should be interpreted and used with caution.

Index Terms—saccade, parametric model, main sequence.

I. INTRODUCTION

Saccades are brief human eye movements that continually
redirect our line of sight to objects of interest throughout daily
life [21]. Difficulties in executing eye movements are among
the first symptoms of some neurological diseases [25]. Hence,
abnormalities in ocular motor function can have significant
meaning to clinicians, and they may provide opportunities for
more timely diagnosis and treatment. In fact, eye movements
are biomarkers of specific diseases and syndromes and can
be tracked longitudinally to evaluate the outcomes of specific
interventions. Therefore, the quantitative analysis of saccades
can aid in the clinical diagnosis, prognosis, and possibly
intervention of various neurological conditions.

In this paper, we propose a parametric model for saccade
waveforms. During a saccade, the eye rotates from one angle
to another as it moves its focus from one object of interest to
another. The angle as a function of time (as the eye rotates)
exhibits a particular waveform as shown in Fig. 1. Our pro-
posed parametric saccade waveform model approximates this
waveform, mimicking the behavior of a natural saccade. The
saccade model has five parameters each with distinct meaning.
The model can be used to simulate saccade waveforms of
different shape and size.

The proposed saccade waveform model conforms to a well-
known empirically observed relation between peak saccadic
angular velocity and saccadic amplitude. (The amplitude of
a saccade is defined as the total angle traversed during the
saccade.) It is known that for small saccades the peak angular
velocity tends to be linearly proportional to amplitude [4].
For large saccades there is a saturation effect and the peak
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Fig. 1. Saccade (a) angle and (b) angular velocity.

angular velocity reaches a maximum value. This relationship
between peak angular velocity and amplitude is known as the
saccadic ‘main sequence’ [4]. It is used as a tool to evaluate
saccadic dynamics [7]. Our proposed saccade model not only
approximates the waveforms of real saccades but also captures
this relationship.

The proposed saccade waveform model simulates saccade
waveforms more realistically than models based on simply
scaling and translating a fixed waveform. For example, the
waveform of a small saccade can be approximated by a
sigmoid function or by a Gaussian or Gumbel cumulative
distribution function. However, as will be shown in Section
III, the proposed model approximates saccade waveforms more
accurately, especially larger saccades.

The proposed model can be used to evaluate algorithms
for saccade detection. Many saccade detection algorithms
have been developed to aid in the quantitative analysis of
saccades. But the evaluation of such algorithms is difficult
due to disagreement among clinicians as to the interpretation
of eye-tracking data. The true timing and dynamics of recorded
saccades are not completely known. The use of simulated
saccade waveforms provides an objective measure by which
to evaluate and compare various saccade detection algorithms.
The use of simulated saccades also makes it possible to easily
vary the sampling rate and noise contamination conditions. A
Matlab program to simulate saccades is available from the
author. In Section IV, we compare four saccade detection
algorithms using the proposed saccade model.

The proposed model can also be used to evaluate methods
to estimate saccadic angular velocity. Abnormally slow sac-
cades are suggestive of diseases involving brainstem saccadic
burst neurons [6], [25]; thus, it is quite important in clinical
medicine to accurately measure the peak angular velocity of
the eye during saccades. Saccadic angular velocity is usually
estimated using a low-pass differentiation filter. In Section V,
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Fig. 2. Peak saccadic angular velocity (Vp) versus saccadic amplitude (A).
Each point represent a saccade.

we use the proposed saccade waveform model to show that the
estimated peak angular velocity actually depends substantially
on the particular filter utilized.

The proposed model is different in purpose and form than
previous saccade models. Previous models generally aim to de-
scribe the biological-neuronal processes underlying saccades.
A purpose of such models is to understand how various parts
of the brain work together to control eye movement [2],
[17], [20], [26], [29], [36]. Such models take the form of a
dynamical system. In contrast, our intention is to model the
saccadic waveform itself (not the underlying neural processes)
for the purpose of facilitating the evaluation of methods for
quantitative analysis of saccades.

II. BACKGROUND

A. Eye Movement Recording Equipment

The search coil is considered the gold standard for eye
tracking as it provides high accuracy and high sampling rate
recordings. A search coil is a contact-lens-like ring containing
coils of thin copper wire [10], [28]. It is placed on the eye
of a participant who is siting in a magnetic field during the
eye movement recording. However, coil systems are expensive
and are no longer widely used. Nowadays, high-speed video-
oculographic eye trackers are widely used because they are
non-invasive and convenient [27]. Studies suggest that con-
temporary video tracking now approaches the search coil for
measuring eye movements [22], [33].

B. Main Sequence

For small saccades, peak saccadic angular velocity (Vp)
tends to be linearly proportional to saccadic amplitude (A);
and for large saccades, peak saccadic angular velocity sat-
urates. This phenomenon has been established empirically
[4] and can be explained by biological dynamical system
models [12], [15], [16], [34]. The data shown in Fig. 2 reflect
this behavior. This data consist of eye movements recorded
while an individual read lines of alphabetic characters on a
page. Small saccades occur when the person looks from one
character to another on a line of text; whereas, large saccades
occur when the person reaches the end of one line of text
and looks to the beginning of the next line. In Fig. 2, each
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Fig. 3. Saccade model s(t) and its component f(t), −f(t− τ).

saccade is shown as a point at coordinate (A, Vp) where
A is the saccadic amplitude and Vp is the peak saccadic
angular velocity. The relationship between Vp and A can be
approximated by the exponential function,

Vp(A; η, c) = η
(
1− e−A/c

)
. (1)

This equation was proposed by Baloh et al. to permit rapid
statistical comparison between subjects with normal and ab-
normal eye movements and has been shown to be superior to
other equations [7]. The parameter η represents the maximum
attainable peak angular velocity of any saccade made by the
individual. The parameter c determines the proportionality
constant between Vp and A for small saccades.

This relationship shown in Fig 2 is known as the saccadic
‘main sequence’. The main sequence curve varies from in-
dividual to individual, but it is highly reproducible for an
individual and cannot be voluntarily altered [9], [14].

C. Saccade Detection Algorithms

A few publications have compared the performance of var-
ious saccade detection algorithms; however, the comparisons
were conducted using a small data set [1] or simplified tests
[19]. Large saccades can be distinguished from other eye
movements because they are much faster than other types
of eye movements [18], [21]. There are two main classes
of saccade detection algorithms: (1) velocity-based and (2)
dispersion-based. We briefly review several algorithms here
and compare their performance in Section IV.

Velocity-based algorithms analyze the angular velocity of
the eye. Given a threshold value, eye movements with an-
gular velocity exceeding the threshold value are classified as
saccades. The threshold value must be prescribed with care,
because the velocity is adversely affected by noise in the
signal. Engbert proposed an algorithm for the detection of
microsaccades using an adaptive global threshold [13]. This
algorithm estimates the noise of the signal and prescribes
a threshold value proportional to it. It works well for both
microsaccades and large saccades. Nystrom proposed a more
adaptive algorithm, which uses an adaptive global threshold for
saccade onset; the threshold value is determined by iteratively
estimating noise during fixations [23]. The end of each saccade
is determined by a local adaptive threshold value.

Dispersion-based algorithms process directly the angle of
the eye and measures its dispersion (‘spread’). In contrast
to saccades, during fixations the eye moves minimally and
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Fig. 4. Simulated saccades. Saccades A, B, C are generated by varying only
τ . Saccades D and E have the same amplitude but different peak angular
velocity and correspond to different main sequence parameters.

the eye angle is relatively constant [30]. Dispersion-based
algorithms classify intervals during which the eye is relatively
constant as fixations, and classify other intervals as saccades.
These algorithms use a moving window and calculate the
dispersion within the window [8], [32].

III. SACCADE MODEL

In this section, we propose a model for saccadic waveforms
and describe its parameters. We demonstrate that the proposed
model fits physiologic saccades better than other models.

A. Saccade Model Formula

We model a saccadic waveform s(t) as the sum of a soft
ramp function f(t) and a shifted negated soft ramp function
−f(t− τ), i.e.,

s(t; η, c, τ) = cf(ηt/c)− cf(η(t− τ)/c) (2)

where

f(t) =

{
t+ 0.25e−2t, t > 0

0.25e2t, t 6 0
(3)

and η, c, and τ are parameters.
Fig. 3 illustrates how the saccade model s(t) is constructed.

Note that the amplitude A of the saccade model s(t) is given
by ητ ,

A = lim
t→∞

s(t)− lim
t→−∞

s(t) (4)

= ηt− η(t− τ) (5)
= ητ. (6)

Observe that the peak angular velocity (Vp) of the saccade
model s(t) agrees with formula (1) which relates Vp and A.
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Fig. 5. Waveforms of saccades to targets at 3.6◦, 9◦ and 14.4◦.

Using (2), (3), and (6), we have

Vp = s′(τ/2) (7)
= ηf ′(ητ/2c)− ηf ′(−ητ/2c) (8)

= η
(
1− e−A/c

)
. (9)

In (7), we used the fact that the maximum value of s′(t) occurs
at t = τ/2. It can be seen in (9) that parameters η and c
determine the main sequence equation (1).

B. Saccade Model Parameters

We incorporate two more parameters, t0 and s0, to specify
the saccade onset time and initial saccadic angle,

S(t; η, c, τ, t0, s0) = s(t− t0; η, c, τ) + s0. (10)

The five parameters η, c, τ , t0, s0 of the proposed model
determine the shape, amplitude, onset time, and initial angle
of the simulated saccade.

From (9), the parameters η and c determine the relationship
between amplitude A and peak angular velocity Vp of a
simulated saccade. The parameter τ thus determines a point
on the main sequence curve (1) characterizing the saccade.
Hence, τ determines both the amplitude A and peak angular
velocity Vp of a simulated saccade s(t) in accordance with
the main sequence relation (1). As shown in Figs. 4(a) and
4(b), small, medium and large saccades can be simulated by
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(b) Sigmoid, MAD = 0.2102
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(d) Gumbel, MAD = 0.2141

Fig. 6. Average angular velocity waveform of 14.4◦ saccades (solid line)
fitted by various models (dashed lines). The proposed model fits the saccade
better than other models.

TABLE I
FITTING ERROR BETWEEN SACCADE MODELS AND DATA

Mean Absolute Deviation

Saccade amplitude Proposed Sigmoid Gaussian Gumbel
3.6◦ 0.0178 0.0286 0.0195 0.0450
9◦ 0.0400 0.1118 0.0806 0.1401
14.4◦ 0.0695 0.2102 0.1550 0.2141

varying only τ . These simulated saccades lie on a single main
sequence curve.

Parameters η, c and τ together determine the shape of the
simulated saccade waveform. It is beneficial that the proposed
model can simulate saccades conforming to a prescribed
Vp(A) relationship, because the main sequence curve is a
practical diagnostic tool to distinguish slow saccades from
normal saccades. As shown in Figs. 4(c) and 4(d), the proposed
model can simulate saccades that have the same amplitude, but
correspond to different main sequence relations.

C. Saccade Model Verification
We demonstrate that the proposed model can well approxi-

mate physiologic saccades. We acquire a dataset of eye move-
ments of 24 healthy adults making eye movements as quickly
as possible to targets that are illuminated to the right and
left of a fixation cue on a computer screen. We subsequently
detect saccades with an angular velocity threshold (30◦/s) and
extract saccades with amplitudes similar to that of the target
amplitudes [24]. Thirty saccades to targets at 3.6◦, 9◦, 14.4◦

are selected. The saccade waveforms are shown in Fig. 5,
where they have been mutually aligned. We fit the proposed
model to the averaged saccade waveforms (using fitnlm in
Matlab), as illustrated in Fig. 6(a).

Meanwhile, other functions such as the sigmoid, and Gaus-
sian or Gumbel cumulative distribution function, can also be
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Fig. 7. Simulation data generated by the proposed models

used to model saccade waveforms. Therefore, for comparison,
we scale these functions to model saccades,

sigmoid(t) =
a

1 + e−(t−t0)/b
+ s0 (11)

Gaussian(t) =
a

2

(
1 + erf

( t− t0√
2b

))
+ s0 (12)

Gumbel(t) = ae−e
−(t−t0)/b

+ s0 (13)

where a and b are amplitude and temporal scaling parameters.
All models can fit small-amplitude saccades well. How-

ever, as shown in Fig. 6, the proposed saccade model fits
large-amplitude saccades more accurately than other saccade
models. To quantify the fitting error between real and simu-
lated saccade waveforms, we use the mean absolute deviation
(MAD), which we report in Table I. The three considered
models (11) (12) (13) do not take into account the fact that
large-amplitude and small-amplitude saccades have different
shapes as reflected by the Vp(A) relation (1) [Vp plateaus at
large saccadic amplitudes].

IV. SACCADE DETECTION ALGORITHMS

The proposed parametric saccade waveform model can be
used to evaluate saccade detection algorithms. The model al-
lows the simulations of saccades that conform to a designated
Vp(A) relationship (‘main sequence’) which can vary from one
individual to another individual, resulting in unique person-
specific main sequence curves. With a large dataset, we hence
have a range of parameters in the main sequence equation
(η and c). We can easily simulate many saccades of different
size and shape, with arbitrary inter-saccadic intervals as shown
in Fig. 7. This is a simulation (at 500 samples/second) of
one person making saccades to the left and right, with the
simulated saccades being normative (as shown in Fig. 7).
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Fig. 8. Evaluation of four saccade detection algorithms.

We use simulated saccades to evaluate four common sac-
cade detection algorithms. Eye movement data from video
tracking systems tends to be noisy due to the difficulty of
continuously and accurately identifying the pupil and cornea
reflection [24]. Therefore, we add white Gaussian noise to
simulate pervasive measurement noise to test the robustness of
the saccade detection algorithms. To measure and compare the
performance of the saccade detection algorithms, we calculate
F1 scores as in [35]; see Fig. 8.

F1 score = 2
Precsion · Recall

Precision + Recall
(14)

Precision =
True Positive

True Positive + False Positive
(15)

Recall =
True Positive

True Positive + False Negative
(16)

The four saccade detection algorithms exhibit markedly
different performance profiles, especially in the presence of
noise. The dispersion threshold algorithm (DT) is the least
accurate because it is designed for fixation and regards any-
thing else as a saccade [30]. Simple velocity threshold (VT)
algorithms and adaptive velocity threshold (Engbert, Nystrom)
algorithms perform similarly when the noise is small [13],
[23]. At higher noise levels, simple velocity threshold results
in many false positive detections. The global adaptive velocity
threshold algorithm (Engbert) also results in false negatives
(i.e., non-detected saccades). Therefore, in terms of the F1
score, the Nystrom algorithm appears to be the most robust of
the four algorithms.

V. SACCADE PEAK VELOCITY ESTIMATION

Peak saccadic angular velocity can be used as a biomarker
of brainstem burst neuron disease and a sign of fatigue
[11]. But accurately measuring saccadic angular velocity is
difficult because of noise and the short duration of saccades.
Differentiation (to calculate velocity) is vulnerable to noise.
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Fig. 9. Histrogram of peak saccadic angular velocity estimated using SG
filters of different polynomial order K. The dashed line indicates the true
peak saccadic angular velocity.

Pure differentiation amplifies noise. Hence, differentiation is
typically performed in conjunction with low-pass filtering to
avoid noise amplification. But low-pass filtering smooths data
and leads to an underestimation of peak angular velocity.

We use simulate saccades to study the accuracy of peak
angular velocity as estimated using a low-pass differentiation
filter. Here, we use the proposed model to simulate one
hundred 5◦ and 15◦ saccades (at 500 samples/second) and add
white Gaussian noise N (0, 0.5) to the simulated saccades. We
use the Savitzky-Golay (SG) low-pass differentiation filter [31]
(sgolay in Matlab) to estimate the peak saccadic angular
velocity because this filter is often used for eye movement
analysis. Fig. 9 shows the results.

The accuracy of the estimated peak saccadic angular ve-
locity depends on the particular low-pass differentiation filter
[5]. The SG differentiator with impulse response of length
N = 11 and polynomial order K = 2, severely underestimates
peak angular velocity of small-amplitude saccades, as shown
in Fig. 9(a), and slightly underestimates peak angular velocity
of large-amplitude saccades, as shown in Fig. 9(b). The SG
differentiator with polynomial order K = 4 (corresponding to
a higher cut-off frequency) estimates peak angular velocity
of small saccades more accurately, as shown in Fig. 9(c).
However, this filter overestimates the peak angular velocity
of large-amplitude saccades, as shown in Fig. 9(d). This sug-
gests different filters should be used for saccades of different
amplitude to more accurately estimate peak angular velocity.

VI. CONCLUSION

In this paper, we propose a parametric model for saccadic
waveform simulation, that fits saccades more accurately than
scaled-sigmoidal models. The proposed model conforms to the
established relation (1) between peak saccadic angular velocity
and saccadic amplitude. The proposed model is simple, yet it
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approximates a variety of saccadic behaviors that recapitulate
normative physiology.

We demonstrate the use of the proposed saccade model
to evaluate basic methods for quantitative saccade analysis.
Using the model, we compare the performance of four saccade
detection algorithms and identified the algorithm by Nystrom
et al. as being the most robust to noise. We also use the model
to investigate the statistical accuracy of peak saccadic angular
velocity as estimated by the standard technique (low-pass dif-
ferentiation). We find that a prescribed low-pass differentiation
filter may systematically underestimate or overestimate the
peak saccadic angular velocity. It follows that one should
exercise caution in the interpretation and use of peak saccadic
angular velocities as estimated by the standard technique.

The saccade waveform model presented in this paper
assumes the angular velocity profile is symmetric. While
small-amplitude saccades are approximately symmetric, large-
amplitude saccades tend to be skewed (non-symmetric).
Hence, it will be of interest in future work to generalize the
proposed model to the non-symmetric case. That being said,
normal human saccadic eye movements are seldom larger than
15 degrees [3]. As the proposed model is satisfactory for
saccades of this size (cf. Fig. 6), it should have practical value
as presented.
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