
 

Abstract—In this study, we used Tactile Imaging System (TIS) 

and machine learning algorithms to classify breast masses in vivo 

as malignant or benign. When the silicone probe at the front end 

of TIS is compressed against the breast mass, the indentation 

profile of this waveguide is captured by a CCD camera. Then 

TIS algorithm determines the size and stiffness of inclusions 

based on the acquired tactile images. The size and stiffness 

results are then used as the input features for breast tumor 

classification algorithms. We compared three tumor 

classification algorithms: k-nearest neighbor, support vector 

machine, and Naïve Bayes, which are known to work well for 

limited data set. We tested these algorithms on twelve human 

breast tumors. The results were evaluated using the leave-one-

out cross validation technique. Among the three algorithms, k-

nearest neighbor classifier performed the best with sensitivity of 

86% and specificity of 100%. 

 
Index Terms— breast cancer screening, breast tissue stiffness, 

breast tumor classification, tactile breast imaging. 

I. INTRODUCTION 

Some breast cancer screening techniques revolve around 

the fact that cancerous masses tend to be stiffer than benign 

masses [1], [2]. One such method is tactile imaging, which is 

capable of characterizing breast masses in vivo. Tactile 

Imaging System (TIS) is based on optical sensor technology 

[3]. Therefore it is noninvasive and harmless.  It utilizes a 

thin, flexible, and transparent silicone waveguide and a charge 

coupled device (CCD) to capture tactile images (Fig. 1). The 

TIS algorithm estimates mechanical properties, such as size 

and stiffness. These properties are used to differentiate 

between malignant and benign breast masses [2], [4]. 

Recently, it is becoming increasingly popular to use 

machine learning algorithms for computer-aided clinical 

diagnosis. It helps to analyze medical data more efficiently 

and with fewer human-related errors [5], [6]. K-nearest 

neighbor (KNN) is a non-parametric classification technique 

and it is used for breast cancer application in [7]. Samir, Al-

Absi and Kassoul classified images from the Mammographic 

Image Analysis Society (MIAS) dataset. The authors 

combined KNN method with K-means method in their 

 
 

classification. They achieved 98.2% classification accuracy 

for normal/abnormal region and 100% classification accuracy 

in malignant/benign classification. Support vector machine 

(SVM) method is a two-class classifier, which found uses in 

multiple medical applications. SVM was used for breast 

cancer classification by [5], [8]. Both groups of researchers 

used the Wisconsin breast cancer dataset (WBCD) and 

achieved 98.5% and 99.5% accuracy, respectively. Naïve 

Bayes (NB) is a parametric technique, which is used for 

malignant/benign of breast masses classification in [9]. They 

achieved classification accuracy of 93% [9]. 

The objective of this work is to employ TIS and the 

machine learning algorithms to classify benign/malignant 

breast masses in vivo.  

In our previous work [10], it was shown that TIS estimate 

size and stiffness of inclusions. In this paper, we analyze the 

pilot dataset of 12 human breast tumors. We use the machine 

learning classification algorithms to discern malignant and 

benign tumors. 
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Fig. 1. TIS in breast cancer application. 

TIS is applied from the top of a breast mass. Tactile images are captured by 

the CCD camera. They are saved on the computer with corresponding force 

information for the further analysis. 

 



II. TACTILE IMAGING SYSTEM 

This section describes the TIS design and algorithm for size 

and stiffness estimation. 

A. TIS Design and Principle 

TIS has two main components: a thin silicone waveguide as 

the tactile sensor, and a charge coupled device (CCD) camera 

as the detector. Fig. 1 shows the design and operating 

principle of TIS.  

Our system utilizes the total internal reflection principle of 

light inside the flexible and transparent silicone waveguide, 

which is a layer of polydimethyl siloxane (PDMS). The four 

white LEDs homogeneously illuminate the waveguide. The 

external force gauge (Mark-10, Long Island, NY) attached on 

top of the CCD camera. 

When TIS is compressed against a breast mass, the 

waveguide deforms. Due to the deformation, the internally 

scattered light within the transparent silicone probe escapes 

toward the camera. The captured light by the camera forms 

the tactile image. These images along with the corresponding 

applied forces are the inputs for TIS algorithm. 

B. TIS Algorithms for Size and Stiffness Estimation 

In the previous work [10], we described the methods to 

calculate size and stiffness of tissue inclusions. The 3D 

interpolation method estimates the size of masses. To estimate 

stiffness of a mass or tumor, TIS uses the conventional tensile 

tests [11]. TIS estimates Young’s modulus by capturing the 

indentation of the soft silicone probe during compression. 

Young’s modulus describes the stiffness of the tested material 

in its elastic region. It is calculated as the stress applied to the 

region divided by the strain in the test region [10].   

Breast tissue phantoms are developed to test TIS 

performance [10]. Polyvinyl chloride (PVC) is used to create 

the phantom, which mimicked breast tissue mechanical 

properties. The phantoms of breast masses were either 

polyacrylo nitrile (acrylic) spheres, or made from PDMS. We 

varied the stiffness of the phantom breast masses by changing 

the ratio of the PDMS mix (the two-component silicone 

material) during fabrication. Young’s moduli of the fabricated 

breast tissue and inclusion phantoms were measured using 

Instron 4442 (MA, USA).  

III. COMPUTER-AIDED CLASSIFICATION 

To classify breast masses using the TIS output (size and 

stiffness), we used three classifiers: KNN, SVM, and NB. 

These methods are known to work well with small datasets. In 

addition, we assigned prior probabilities for the classification 

based on the knowledge that malignant tumors compose 

approximately 20% to 30% of all biopsies [12]. The priors 

were 0.30 for malignant and 0.70 for benign cases. Figure 2 

presents the general procedure of the method. Next, we 

describe KNN, SVM, and Naïve Bayes classification 

algorithms. 

A. KNN Classification 

KNN is a non-parametric classifier that can work with 

arbitrary distributions [13]. It uses available data to classify 

new data points based on a similarity measure. KNN uses a 

distance function, as the similarity measure, to define k 

nearest neighbors among the data points. The class of 

majority neighboring points will define the class assignment 

of new data point.  

We used k number of neighbors in the range from 1 to 9, 

and applied Euclidian, Mahalanobis, and Chebyshev distances 

as the metric for the algorithm. Euclidian, Mahalanobis, and 

Chebyshev distances were calculated using the following,  

 

 

 

 

 

 

where xi and yi were two groups of points, and C is the 

covariance matrix [14]. 

B. SVM Classification 

SVM classifier finds optimal decision surface for linearly 

separable data. The goal of SVM training is to search for the 

decision surface with the largest margin. The classifier will 

have better generalization of the dataset if its margins are 

greater [14]. If the data is not linearly separable, it is projected 

to the high dimensional feature space using kernel functions, 

where this data becomes linearly separable. For SVM, we 

used polynomial and Gaussian kernel options following [15]. 

The polynomial kernel is the following,  
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Fig. 2. Computer-aided classification of breast masses with TIS.  
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where d is a degree of the polynomial. The polynomial order 

was in the range from 1 to 9. The Gaussian option is the 

following, 

 

 

for some positive number σ, as the standard deviation.  

C. Naïve Bayes Classification 

NB is the parametric technique. It assumes independence of 

the dataset features [14] and searches for the most likely class 

in the given dataset. Using NB method, we applied several 

distributions for smoothing the data: normal and kernel. In the 

case of the normal distribution option, the classifier finds 

mean and standard deviation of the training set to estimate 

Gaussian probability distribution for each class in the training 

set. When the kernel option is selected, the kernel density will 

be calculated for each class in the training dataset. We used 

box, triangle, Gaussian and Epanechnikov kernels. The 

following equations present one dimensional kernel functions. 

For the bivariate data, the same smoothing kernel function 

applied to each variable.  
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were u is the difference between the estimated density 

function at x and the observations at xi. 

IV. VALIDATION OF THE METHOD 

We calculated sensitivity and specificity of the tumor 

classification method to evaluate its performance. The leave-

one-out cross validation (LOOCV) was used in this work 

[14]. The idea behind LOOCV is to use all available data to 

validate the classification method. We take N-1 data points 

from the N point dataset at a time to train the classifier. One 

point, which was not included in the training process, is used 

to test the classification result. All points are tried as a test 

point exactly once. Then the average error for all trials is 

computed. 

The sensitivity and specificity were calculated as follows,  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
(%),                   (10) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃+𝑇𝑁
(%).                   (11) 

TP denotes true positive result of the classification, where 

the malignant mass was classified as malignant. TN is the true 

negative result of the classification, where the benign mass 

was classified as benign. FP denotes false positive result, 

where the benign mass was classified as malignant.  FN is the 

false negative result, where the malignant mass was classified 

as benign. 

V. RESULTS 

This section presents the performance of the classifiers on 

TIS dataset obtained from human patients. 

A. Human Dataset 

The pilot TIS dataset consisted of 12 human patients 

(IRB# 13661 Temple University). All 12 females were 

scheduled for biopsy. The patients for our experiments were 

selected by the radiologists. The patients’ age ranged from 24 

to 84 years. We received the clinical pathology results for 

each patient, which specified 7 malignant and 5 benign cases. 

B. Classification Results 

All algorithms were implemented in MATLAB R2014b 

(The MathWorks Inc., USA). We applied the cross-validation 

method with leave-one-out technique to estimate the 

sensitivity and specificity. Table I shows the sensitivity and 

specificity results for the classification of tumors for the pilot 

dataset of 12 human patients. The best performance of each 

classifier is highlighted in each column of the table. For the 

KNN classifiers, the value of k was varied from 1 to 9 with 

Euclidian, Mahalanobis, and Chebyshev metrics. Among the 

Euclidian and Mahalanobis metrics, KNN with k=1 produced 

the highest sensitivity of 86% with a specificity value of 80% 

TABLE I  

MALIGNANT/BENIGN CLASSIFICATION RESULTS FOR HUMAN DATA (SENSITIVITY/SPECIFICITY) 

KNN SVM NB 

k Euclidian Mahalanobis Chebyshev Order/Shape Polynomial Gaussian 
Kernel 

Gaussian 

1 0.86/0.80 0.86/0.80 0.71/1.00 1 0.00/1.00 0.71/0.80 0.29/0.80 

2 0.71/1.00 0.71/1.00 0.57/1.00 2 0.29/0.60 0.71/0.80 Box 0.86/0.60 
 

3 0.43/1.00 0.57/1.00 0.43/1.00 3 0.71/0.80 0.86/0.80 Triangle 0.71/0.60 
 

4 0.71/1.00 0.71/1.00 0.86/1.00 4 

0.86/0.80 
0.86/0.60 

Gaussian 0.71/0.40 
 

5 0.43/1.00 0.43/1.00 0.43/1.00 5 Epanechnikov 0.71/0.60 
 

6 0.29/0.60 0.43/0.60 0.29/0.60 6 0.86/0.40  
  

7 0.00/0.60 0.00/0.60 0.00/0.60 7 

0.86/0.60 0.86/0.60 
   

8 
0.00/1.00 0.00/1.00 0.00/1.00 

8 
   

9 9 
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for both distance metrics. For the Chebyshev metric, KNN 

with k=4 performed the best with 86% sensitivity and 100% 

specificity. The SVM algorithm with polynomial option of 

order 5 provided the highest sensitivity and specificity values 

of 86% and 80%. With the SVM algorithm with Gaussian 

option, the third order produced the same results as the fifth 

polynomial order. The NB classifier with the “box” kernel 

provided the highest sensitivity and specificity values of 86% 

and 60%, respectively. Overall, the KNN classifier (k=4 and 

Chebyshev distance) showed the best classification 

performance among the classifiers.  

VI. CONCLUSIONS AND DISCUSSIONS 

TIS and its algorithms together with machine learning 

techniques are capable of differentiating malignant and benign 

tumors in vivo. Size and stiffness of tumors are estimated 

using TIS. The performances of the three classification 

algorithms (KNN, SVM, and NB) were compared using 

sensitivity and specificity.  

We tested the developed method using the pilot TIS dataset 

of 12 human patients. We achieved best performance of 86% 

sensitivity and 100% specificity with LOOCV using KNN 

classification. These primary results demonstrate the clinical 

feasibility of TIS, and provide us information for selecting the 

classifier for the TIS dataset. Note that the pilot dataset is not 

large enough for a comparative study of the classifiers with 

the published clinical results in the literature. A full scale 

clinical test is left as a future work.  
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