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Abstract—The success of Identity Vectors in speech recognition
as a tool for subject verification, language detection, word recog-
nition, and accent/dialect classification suggests the technique is
a robust method of unsupervised learning on high dimensional
data, such as electroencephalograms. Tests run on the PhysioNet
EEG Motor Movement/Imagery corpus concerning the matching
of subject specific trials showed an average verification of 99% for
the 109 subject-trial tests. Further tests on the ability to cluster
repeated subject-trials produced at least one matching subject-
trial for 60% of the subjects. The driving component of the
Identity Vector process is the creation of Universal Background
Models derived from single dimension Gaussian mixtures of user
defined sizes operating on cepstrum feature coefficients. Taken as
a whole, the results of this work indicate that Identity Vectors can
be effective at distinguishing between subjects and show promise
when asked to generate cohorts of related data.

I. INTRODUCTION

Development of an EEG indexing system for research
datasets is critical to the development of tools designed to
process patient EEG records. Neurologists’ ability to annotate
records is limited by their time and their exposure to various
EEG phenomena [1]. Annotated training sets lead to robust
detection and categorization algorithms using the existing
domain knowledge of neurologists. When faced with EEGs
deviating from known phenomena neurologists struggle, as
do the algorithms they helped develop [2]. The ability to
link known recordings to previously unlabeled data will boost
the development of detection algorithms and overall EEG
diagnostic power.

Research from the speech community shows it is possible to
discern speakers, environments, and forms of communication
from speech recordings using unlabeled data [3]. The initial
work in this area showed the effectiveness of I-Vectors as not
only subject verification tools, but as a framework to resolve
relationships between subject recordings [4]. As the EEG
community struggles with similar problems the use Universal
Background Models (UBMs), Joint Factor Analysis (JFA),
and I-Vectors may prove beneficial to the advancement of
unsupervised EEG annotation and diagnosis. However, the
increased data complexity of EEGs with respect to speech
data means the aforementioned techniques must be developed
and verified to assure such techniques can be translated to the
new field[5].
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The main aim of this work is to setup a framework for
cohort retrieval across the NEDC EEG Corpus to aid clin-
icians and researchers in finding pertinent data from within
the database for their work [6]. Implicit within this goal is
reducing the need for professional neurologists to annotate
EEG recordings. When professional annotation is needed
the records neurologists review contain relevant features and
events culled from this unsupervised learning process. At the
same time, EEG records can be linked based upon their found
features to enhance clinical searches otherwise carried out
only on medical reports. The development of these tools will
hopefully lead to a reduction in the need to manually review
data will improve the diagnostics concerning EEG tests.

II. MATERIALS & METHODS

A. Data Source: PhysioNet - EEG Motor Movement/Imagery
Dataset

The PhysioNet EEG Motor Movement/Imagery Dataset
contains recordings of 109 subjects at 160Hz from 64 elec-
trodes placed in the standard 10-20 configuration. Each record-
ing captures a single trial, with 14 unique trials per subject,
each containing 30 tasks shown in figure 1 [7]. Half the
trials require physical movement and half require imagined
movement. The tasks are divided into contrasting actions:
opening/closing fists (event T1) versus feet (event T2), open-
ing/closing the left (T1) versus the right (T2) fist, and a rest
state (T0). There were two additional recordings per subject,
resting eyes open (REO) and resting eyes closed (REC), which
serve as calibration trials for the original experiment.

Data from the calibration trials were used to test the effec-
tiveness of subject verification under near ideal conditions; No
exterior sensory input to the subject. Each set contains a single
trial spanning all subjects with the REO trials labeled as set
R01 and the REC trials labeled as set R02. The non-calibration
trials were grouped into similar sets labeled R03 through R14
with results aggregated over all subjects/trials to show error
trends and cohort retrieval probability. In all cases the data for
building the UBM, the training I-Vectors, and testing I-Vectors
are identical for a given test. The full data set contained R01
through R14 and the motion data set contained R03 through
R14.

B. Data Treatment

A one-second 90% overlapping sliding window was used to
build the 26 cepstral coefficients used as the baseline features



for the UBM algorithm [8]. The generated UBMs spanned
{2, 4, 8, 16, 32, 64, 128, 256, 512} Gaussian mixtures to
adequately capture the variance in the data given the number
of subjects (109), channels (22), and features (26).

C. Universal Background Models and Joint Factor Analysis

The UBM represents subject-independent characteristics
as a set of n Gaussian mixtures. Each mixture contains m
independent Gaussian distributions matching the number of
source features[9]. In this work, the Gaussian mixtures are
built from the 26 cepstrum coefficients of the processed EEG
signals. These UBMs provide a base over which models can
be developed through I-Vector based recognition.

D. I-Vectors

Creation of an I-Vector depends upon a total-variability
matrix {T}, the UBM supervector {m}, the targeted I-Vector
{M}, and the subject specific I-Vector {w} shown in Eq. 1.
This process is an adaption of Joint Factor Analysis shown
in equation 2 with the speaker/session factor vectors {y, x, z}
and variability matrices {V,U,D}.

M = m+ Tw (1)

M = m+ V y + Ux+Dz (2)

The m vector is a supervector of the means and variances
gathered from the UBM. The training data is used to generate
I-Vector, s, which serves as an optimization target for w. As
m contains both mu and sigma, w has rows equal to twice the
number of features. The columns of w, and thus the size of
the I-Vectors, is capped at the min of 100 or n − 1 where n
is the number of subjects. The upper limit {100} is adjusted
based upon the dimensionality of the data and the needs of
the user.

Training T , or its JFA equivalents, is reliant on the co-
variances of the UBM and Baum-Welch statistics generated
from the adjusted means of the UBM means and test data.
This process is identical for I-Vectors and joint factors, but
is beyond the scope of the paper. A proper discussion of this
technique is covered by Kenny et al in [10].

The dependent factors vector {w} becomes the resultant
I-Vector for each M once T is resolved. This differs from
JFA where V,U, and D enable specific solutions based upon
channel and session variability [11]. I-Vectors combine chan-
nel and session discrimination into one vector further reducing
the dimensionality reduction seen in JFA.

E. Joint Factor Analysis

In an effort to catalog the influences {speaker, channel,
and noise} present when a speaker produces an utterance,
the speech community developed tools to split a speech
super-vector {UBM m} into three parts {eigenvoice matrix
V , eigenchannel matrix U , residual matrix D} shown in
Eq. (2). This represents the fundamental application of JFA
through the separation of the varied components as they are

Fig. 1. Graphical representation of the PhysioNet data. Each trial contains
30 tasks which can be either event T1 (fists/left), T2 (feet/right), or T0 (rest)

sequential solved for in an iterative process [4]. The vector
categorizing all of these influences is M which used the UBM
and weighted components of each matrix to produce an ideal
speaker supervector.

Solving for the next factor in Eq. (2) requires all previously
solved matrices before updating the Baum-Welch statistics.
After which the new estimations undergo the same mathemat-
ical process to create the missing matrix. A deeper treatment
of this approach comes from Kenny et al in [12] where the
idea was introduced.

F. Evaluation and Scoring

Both sets of models, I-Vectors and UBMs, are evaluated
against the feature data to produce an Equal Error Rate
(EER). EER indicates the intersection of the false negative
rate and false positive rate for a given subject’s model. The
I-Vector score is produced by using a Gaussian Probabilistic
Linear Discriminant Analysis (GLPDA) over the raw feature
set. For the UBM mixtures, scores are generated using the
loglikelihood result of the models compared to the raw feature
set.

The UBM and I-Vector models are matching against each
channel in each trial making their evaluation channel agnostic.
Thus a match occurs on the channel level which requires 22
matches for perfect trial verification.

In both instances, the scores represent the model’s ability to
discriminant against the feature data instead of other subject
models. This enables the ability to discern strength of match
over a given subject’s data set providing the ability to rank
matches. Cohort scoring relies on these rankings not for the
their raw score, but the order of the scores being in the top 3
or 5 as needed by the experiment.

G. Software: MSR Identity Toolbox

Development of software tools relied on importing and
modifying the freely available Microsoft Research Identity
Toolbox for MATLAB [13]. The packaged software imple-
ments a Gaussian Mixture Model - Universal Background
Model speaker-recognition and an I-Vector Probabilistic Lin-
ear Discriminant Analysis speaker recognition. This quickly
allowed for a baseline system to be tested without needing to
adjust specific algorithm parameters.

In addition to processing the data, the toolbox supports
evaluation by providing tools to present the equal error rate



Fig. 2. Equal Error Rate on the eyes closed/eyes open calibration data shown
as UBM mixture size increases.

(EER) from detection error rate trade off plots. There are
two confusion scoring matrices, Gaussian Mixture Models
(GMMs) for the UBMs and Gaussian Probabilistic Linear Dis-
criminant Analysis (GPLDA) trials (I-Vectors) which produce
likelihoods of the models match to the data.

H. Experiments

The techniques proposed are new to the field of EEG
requiring a baseline measurement to prove functionality and
validity of the techniques. Testing on the channel and trial
level is necessary to address the increase in dimensionality
from speech data to EEG data.

1) Experiment 0: I-Vector Viability: Verification of a sub-
ject’s trial specific channel, channel-trial, against all other
channel-trials provides the lowest level of verification possible:
matching channels to their common trial. An EER based on
matching channels within a subject’s resting state trials is used
to determine an ideal minimum error rate. This experiment
generates a baseline trend for accuracy with respect to the
number of available Gaussian mixtures.

2) Experiment 1: Trial Verification: Verification at the trial
level, that a subject’s trial matches other subject’s trials,
constrains all channel data to be compacted into one I-Vector
per subject trial. Two data sets were generated: (1) a set of all
of a subject’s trial data and (2) a set of only a subject’s motion
trials. These two sets provide overlapping testing environments
to highlight the influence of the resting state trials. Evaluating
these data sets for their trial specific EER showcases an
abstraction of the feature data into a higher dimensional space
than the channels.

3) Experiment 2: Cohort Retrieval: From the ranked results
of Experiment 1, the top subset of matches is compared against
similar trials within a subject. The PhysioNet experiment
repeated four trials three times, the basic sets are trials {3,
7, 11}, {4, 8, 12}, {5, 9, 13}, and {6, 10, 14}. When the full
data set is run the two resting state trials {1,2} are added to
make each set five trials. As the scores are ranked, groups can
be made out of the top 3 or 5 matches to search for similar
subject trials from the previously sets.

Fig. 3. Equal Error Rate of each motion trial averaged across each subject
shown as UBM mixture size increases.

III. RESULTS

A. Experiment 0: I-Vector Viability
Figure 2 shows error rates on the resting trials, resting eyes

open and closed, which are known to be distinct brain states
given the presence of alpha waves during eyes closed [14].
These are a control because the subjects were not responding
to stimulus during calibration as they were required to during
motion trials. The results are aggregated across all subjects to
highlight errors in matching channels to models as a function
of Gaussian mixture size.

Error rates for the all subjects over the twelve motion trials
data set {R03...R14} is shown in figure 3. Each subject’s data
was run as an individual analysis and then averaged over the
common mixture size. The error bars for each mixture show
± 1 standard deviation across subjects.

B. Experiment 1: Trial Verification
Twelve subjects did not produce perfect trial verification

within the full data set, but only one subject failed to produce
perfect trial verification with the motion data set. The full data
set subject trial match of 0.9908% is less than the rate seen for
the motion data set of 0.9977%. The minimum verification for
a subject’s trials in the full data set is 0.8571% and 0.7500%
for the motion data set. Figures 4 and 6 present individual
results from Subject 001 using Gaussian mixtures of size 4
and 512 which exemplify the results being aggregated overall
subject and mixture combinations.

C. Experiment 2: Cohort Retrieval
Evaluation of the ranked results based upon the clustering

of common trials is seen in figures 7 and 5. Matching sets
differ between the two data sets because figure 5 does not
include the resting trials, producing matches based on a set
of three as opposed to figure 7 with the resting trials having
set of five. The first match is almost always the native
trial, following from the result of Experiment 1, making the
additional matches others within the trial set.

Within the motioin data set a second match is found for
roughly 30% of the subjects and a third match is a non-zero
percentage for all trials. Shifting to the full data set shows
the strongest match cases are for two and three matches, over
60% of all trial matches, with a decrease in single matches.



Fig. 4. Trial matches for subject 001 using 4 Gaussian mixtures, the trial set
highlighted is {4, 8, 12}.

IV. CONCLUSION

A. Experiment 0

In figure 2 the EERs of the UBM and I-Vector evaluations
track each other as mixture size is increased. The I-Vector
EER results for the R01+R02 data set fail to show equivalent
improvement as their related UBM EERs. This suggests a
failure in the calculation of the I-Vectors and was investigated
as such. Review of the individual results showed UBMs built
with two Gaussian mixtures produced EERs over 50%, which
is why figure 4 shows a mixture size of four instead of two.

Both figures, 2 & 3, trend toward an EER of 5% for
the UBM and I-Vector models. The combine set {R01+R02}
shows the EERs increases initially before the falling into the
trend seen in the individual trials. Parallel behavior is seen for
the motion trial data set in figure 3 indicating larger mixtures
generate stronger matches across all the subject’s trials.

Missing a channel match is a penalty of 4.5% which is
near where the models converge for their minimum EER.
This suggests for the datasets tested UBMs and I-Vectors
are tenable for EEG data with an ideal channel based trial
verification of 95%.

B. Experiment 1

Given the performance of trial verification throughout the
datasets the cohort retrieval appears possible within a subject’s
trials. Figures 4 and 6 show the scores as a function of

Fig. 5. Match percentage of I-Vectors based on four Gaussian mixtures over
trials where sets are { (3, 7, 11), (4, 8, 12), (5, 9, 13) and (6, 10, 14)}. Trials
1 and 2 are not shown as they are resting eye trials and contain no attempts
at motion.

Fig. 6. Trial matches for subject 001 using 512 Gaussian mixtures, the trial
set highlighted is {4, 8, 12}.

Gaussian mixtures. These plots illustrate the natural hierarchy
formed by the I-Vector evaluations. Targets 8 and 12 in figure
6 both show a strong within set {4, 8, 12} preference for each
other. Set {6, 10, 14} contains trials of a different imagery
task, but appear as the next strongest matches after the native
trial set.

Using only two Gaussian mixtures makes it difficult to
properly track the two resting state trials {1, 2} as their scores
mimic each other in figure 4. As the mixture count is increased
to 512 Gaussian mixtures in figure 6, the discrimination of the
resting states is improved. Additionally, the resultant scores are
tightened up to the point that positive scores are reported for
within set matches.

C. Experiment 2

Over the 109 subjects an I-Vector is always able to match
to its training data trial and a secondary match within the top
3 scoring I-Vectors show in figure 5. When expanded to the
top 5 results, figure 7, the matches exceed 60% for finding at
least two within set trials for each subject. The presence of
five matches in figure 7 shows that a full set matches do occur.
These complete five matches appear less frequently than their
complete three matches suggesting the full data set many not
be producing improved scores.

As the placement of the matches was not tracked (outside
of the best match), certainty of the cause of the improved

Fig. 7. Match percentage of I-Vectors based on four Gaussian mixtures over
trials where sets are { (3, 7, 11, 1, 2), (4, 8, 12, 1, 2), (5, 9, 13, 1, 2) and (6,
10, 14, 1, 2)}. Trials 1 and 2 are not shown as they are resting eye trials and
contain no attempts at motion.



matching is unclear. Figure 6 highlights this as the resting
states, Trials 1 and 2, match poorly when compared to other
motion trials. As such Trials 5 and 9, which exhibit the
strongest three matches in figure 5, do not perform as well
with five matches in figure 7.

An overall reduction in single matches coupled with an
increase in two matches and three matches suggests the top
ranking I-Vectors are indeed within the subject set. However,
the weak performance of four and five matches suggests
interplay between the sets may be weakening within set
verification. This needs to be investigated further to determine
if the highest matches are being mitigated by other trials
that share properties {artifacts, imagery vs real motion} not
accounted.

The approach detailed in this work suggests channel agnos-
tic subject verification of EEGs is feasible when using UBMs
and/or I-Vectors to model EEG data. Increases to the UBM
Gaussian mixtures shows strong improvement of the EER
across all subjects during all trials. Each Gaussian mixture
size increase directly improves the UBM EER, but I-Vector
EERs improve only in the early mixture sizes. With further
development I-Vectors could be capable of producing reliable
rankings when compared directly to the feature data and even
against other I-Vectors.
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