
  

 

Abstract— As of today, diagnosis of ADHD is highly 
dependent on subjective observations, which has motivated 
researchers to investigate quantitative methods for the 
discrimination of ADHD and Non-ADHD subjects using EEG 
data. The goal of the effort reported here is to classify subjects 
with high accuracy, as well as to do so based on a select few 
channels. By making use of AR model features, several 
classifiers were found to achieve high performance; accuracy 
above 90% for a K Nearest Neighbor classifier and Area Under 
the Curve over 0.98 at Equal Error Rate below 0.05 for a 
Gaussian Mixture Model-Uniform Background Model classifier 
based on combinations of as few as 2 and 3 EEG channels.  
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I. INTRODUCTION 

According to the Diagnostic and Statistical Manual of 
Mental Disorders (DSM-V) [1], attention deficit 
hyperactivity disorder (ADHD) is a condition characterized 
by high levels of inattention, hyperactivity, and impulsivity. 
It is estimated that 11% of children ages 4 to 17 in the US 
are affected by ADHD [2]. Diagnosis of ADHD is done by 
comparing observed symptoms with the symptoms described 
in the DSM-IV. While the latter recognizes three subtypes of 
ADHD, the labeling of the data available for this work 
allows differentiation between ADHD and Non-ADHD only.  

As of today, diagnosis of ADHD is highly dependent on 
observation of symptoms by parents, behavioral scientists, 
and physicians, which is subjective. As a result, finding 
quantitative techniques to aid in the diagnosis of ADHD has 
gained attention. These techniques include estimating power 
in frequency bands, phase-synchrony, coherence, and 
supervised and semi-supervised learning [3, 4, 5, 6, 7, 8]. 
The results obtained in these studies have shown that ADHD 
(A) and Non-ADHD (NA) subjects are, to some extent, 
separable in several feature domains. 

This study concerns the selection and reduction in the 
number of EEG channels that is adequate to classify NA and 
A subjects at a desired level of performance. Motivated by 
encouraging previous results [6], the task at hand is to 
explore whether there is a better combination of fewer than 5 
channels that will further maximize discrimination of A and 
NA subjects while also reducing computational cost. The 
latter is a consideration towards eventual development of an 
efficient portable prototype for point of care diagnostic 
purposes. KNN (k-nearest neighbor) classifiers and GMM-
UBM models (Gaussian Mixture Models – Universal 
Background Model) were used for classification. The 
parameters of auto-regressive (AR) models are used as 
 
 

features. Datasets from 4 subjects (2 NA and 2 A) were used 
for training, while datasets from 4 other subjects (1 NA and 
3 A) were used for testing. The performance associated with 
each selection of channels was analyzed in terms of 
classification accuracy (True Positive + True Negative 
divided by the number of tests) for KNN, and AUC (area 
under the curve) and EER (equal error rate) for GMM-UBM.  

The structure of the paper is as follows: Section II 
provides an overview of how EEG has been used for 
discrimination between ADHD and Non-ADHD subjects. In 
Section III the methods used are described. Section IV 
covers the experiments made and the results. Finally, the 
conclusion is given in Section V. 

II. RELATED WORK 

In 1999, a study reported that the θ/β power ratio of 
ADHD subjects – during resting conditions – was higher 
than that of control subjects [7]. In said study, the power in 
frequency bands was obtained by computing PSD estimates 
from the FFT. To test the hypothesis, the θ/β power ratio for 
all the control subjects was averaged, and the decision made 
to classify as ADHD subjects those whose θ/β power ratio 
was 1.5 standard deviations above the average θ/β power 
ratio of control subjects. The sensitivity reported was 87% 
and specificity 94%. Numerous studies have been performed 
to validate the results. Since then, when attempting to 
replicate the method [7], the accuracy (sensitivity + 
specificity divided by 2) that researchers have found varies 
from 50 to 94% [8, 9]. These results suggest that signal 
power is not enough to produce a diagnosis, but could 
perhaps be used to pre-screen subjects. Teachers and parents 
reportedly [10] can identify ADHD with an accuracy 
ranging from 47% to 58%, i.e. slightly above chance. 

Another study [3] used power in frequency bands along 
with semi-supervised learning in order to diagnose ADHD 
subjects. In this study, the power and power ratios in the α, 
β, ⍬,	and	γ frequency bands were computed and the mutual 
information criterion used to choose the least redundant 
features for training of a Gaussian support vector machine. 
EEG recordings of 10 subjects were used, and the accuracy 
of classification was 97%; the miss rate was not reported. 

In our earlier publication [6], AR parameters, extracted 
from EEG during attention activity, and supervised learning 
were used for the classification of ADHD and Non-ADHD 
subjects based on a KNN classifier. AR(7) models were 
computed from windows of 2 s intervals, and a KNN 
classification accuracy between 85% and 95% was obtained. 
In addition, a confidence metric was derived from the vote 
count of the KNN classifier, in terms of the fraction of K 
nearest neighbors siding with the majority decision; the 
confidence metric ranged from 91% to 99%.  
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The effectiveness of event-related potentials (ERPs) has 
also been studied [4]; 74 control and 74 ADHD subjects 
performed a visual two-stimulus GO/NOGO task while their 
EEG data was recorded. Independent component analysis 
(ICA) performed on the ERPs, and using these features to 
train a SVM classifier, achieved 92% accuracy of 
classification (90% sensitivity and 94% specificity). 

III. METHODS 

An overview is provided in Section III.A of how the data 
were collected, in Section III.B of the features that were 
extracted, and in Section III.C of the classification 
techniques used for channel selection. 

A.  Data Collection 

Children between the ages of 6 and 8 years visited the 
research lab as part of an ongoing longitudinal study (study 
procedures were approved by the Virginia Tech Institutional 
Review Board) focused on frontal lobe development from 
infancy through childhood. Information regarding diagnosis 
of ADHD was obtained via maternal report. EEG was 
recorded using a stretch cap (Electro-Cap, Inc Eaton, OH: 
E1-series cap) in the extended 10/20 system pattern. 
Recordings were made from 26 electrodes located 
equidistant across the scalp. 

Electrode impedances were kept under 20k ohms. The 
electrical activity from each lead was amplified using 
separate bioamps (James Long Company, Caroga Lake, 
NY). During data collection, the high-pass filter was a single 
pole RC filter with a 0.1 Hz cut-off (3 dB or half-power 
point) and 6 dB/octave roll-off. The low-pass filter was a 
two-pole Butterworth type with a 100-Hz cut-off (3 dB or 
half-power point) and 12 dB/octave roll-off. The EEG signal 
was digitized at 512 samples per second for each channel so 
that data were not affected by aliasing. The acquisition 
software was Snapshot-Snapstream (HEM Data Corp, 
Southfield MI). Prior to the recording of each subject, a 10 
Hz, 50 uV peak-to-peak sine wave was input through each 
amplifier and digitized for 30 sec. This signal was analyzed 
and the resulting power values used to calibrate the EEGs.  

After the EEG electrodes were applied, children 
participated in eyes open, eyes closed, and quiet video 
baseline events to collect resting EEG data. Then the 
children completed a battery of cognitive tasks designed to 
assess various aspects of attention [11] using the child 
version [12] of the Attention Network Task (ANT) and 
various aspects of cognition associated with executive 
functions (e.g., number Stroop, Dimensional Change Card 
Sort Task, Digit Span Task).  

In contrast with the θ/β power ratio approach, which used 
data during resting conditions, here data collected during the 
ANT were used in all subsequent analyses.   

The ANT was designed to assess Posner’s brain-based 
attention networks [11] and yields measures of conflict, 
alerting, and orienting. The test requires the child to respond 
to a central target (a yellow fish on a light blue background) 
displayed on a computer screen and indicate whether the fish 
is facing left or right. The child is instructed to look at the 
fixation point, above or below which the target will appear. 
The target may appear with or without flankers (other fish), 

which may or may not be congruent with respect to the 
direction they are facing. Reaction time responses to the 
alert cues, spatial cues, and flankers are manipulated to 
provide an assessment of the efficiency of each of the 
attention networks. The ANT is divided into 3 blocks of ~5 
minutes each, with a brief rest period between blocks. The 
EEG during the first ANT block was used in the subsequent 
analyses reported here. 

B. Feature Extraction 

The features used are the autoregressive (AR) parameters 
ak, extracted from finite length observation records (2 
seconds) for the selected channels. The data is modeled as  
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where p is the order of the AR process and n  is the 
prediction error process. The AR model gives a compact 
representation (a small number of model parameters versus a 
large number of samples) for processes that are resonant, 
narrowband, or pseudo-sinusoidal, such as EEG rhythms; 
hence its proposed use here to generate features for ADHD 
detection. The Burg method was used for AR parameter 
estimation, after finding a reasonable order for the model 
using Akaike Information Criterion: 

    2ln 2AIC p N p    (2) 

where N is the number of observed samples, and 2  is the 
estimated prediction error variance. The “best” estimate for 
the AR model order is the one minimizing  AIC p . 

C. Channel Selection 

To find the best combination of just a few channels, two 
different classification methods were studied. These methods 
consist of iteratively using KNN classifiers and GMM-
UBMs respectively to find the set of channels that suits each 
classification scheme best, in terms of performance. 

KNN 

KNN classifiers were trained and tested to rank the best 
combinations of channels based on the accuracy of 
classification achieved with them. For training, feature 
vectors extracted from 4 subjects (2 A and 2 NA) were used, 
and for testing, feature vectors extracted from 3 A and 1 NA 
subjects that were not part of the training dataset were used; 
all 30 possible unique combinations were used.  

Ranking was done as follows: The EEG data from all 
possible 2-channel combinations was used for feature 
extraction. KNN classifiers were trained and tested, as 
explained in the previous paragraph, and the combination 
that had the highest mean classification accuracy was 
chosen. To find a 3rd channel, all possible 3-channel 
combinations that include the best 2 were used in feature 
extraction and then used for training and classification. This 
process was repeated to find the fourth channel. 

GMM-UBM 

A Gaussian Mixture Model (GMM) is a model for a 
probability density function (pdf) expressed as a weighted 
sum of Gaussian probability density functions [13]. The 



  

main reason for using GMMs for classification problems is 
that Gaussian mixture densities can approximate any 
arbitrary pdf [13]. The pdf of a GMM   is expressed as: 
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where v  is an N-dimensional feature vector, mw  are the 

weights (non-negative and summing to 1), and mg  are the 
individual N-variate Gaussian pdfs, which have the 
following form: 
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where mμ  is an N-dimensional column vector and mΣ  is an 

NxN covariance matrix. The parameters mμ , mw , and mΣ  
identify the M mixture components and weights of the 
GMM. In this study, M was set to 4 because training was 
done using 4 subjects. 

To train the GMMs, i.e. finding the model parameters, 
the expectation maximization (EM) algorithm was used.  

In analogy with the speaker verification approach [14], 
UBMs were found using various combinations of features 
extracted from Non-ADHD subjects (impostors). Models 
were also found to fit the class of ADHD subjects (targets). 
For classification, the log-likelihood ratio (LLR) is used, i.e. 
the ratio of the likelihood of a test vector tν   belonging to 

the ADHD model over the likelihood of tν  belonging to the 

universal background model. If the LLR is greater than or 
equal to zero, the subject is classified as ADHD, otherwise 
the subject is classified as Non-ADHD. 
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For training, feature vectors extracted from 4 subjects (2 
A and 2 NA) were used, and for testing, feature vectors 
extracted from 3 A subjects and 1 NA subject that were not 
part of the training dataset were used. Channel ranking for 
GMM-UBMs was done in the same fashion as described for 
KNN classifiers. 

Figure 1 summarizes the training and testing process, for 
both the KNN and GMM-UBM approaches. 

 

 Fig. 1: Training and testing diagram 

IV. EXPERIMENTS 

Consistent with the previously reported approach [6], AR 
models of order 7 were computed in order to compensate for 
the tendency of AIC to overestimate the order of AR models 
[15]. For every test channel, AR(7) parameters were 
computed, and feature vectors were formed as the 
concatenation of the AR coefficients of all test channels. 
Thus, when searching for the best combination of 2 
channels, 14-D feature vectors were obtained; when 
searching for the best third channel to add to the best 2-
channel combination, 21-D feature vectors were used; when 
searching for a fourth channel to add to the latter 
combination, 28-D feature vectors were used. Lastly, in our 
earlier publication [6], 35-D feature vectors were used. 

By using 4 subjects for training (2 A and 2 NA) and 4 
others (3 A and 1 NA) for testing, the accuracy of 
classification was explored across all 30 unique 
permutations given the data available (5 A and 3 NA). For 
training and testing, AR models were computed from 
windows of 2 s duration, using an overlap of 50%, during 
the duration of ANT. Note that this approach produces many 
(in the range of 240 to 260) test vectors for a single test 
subject and for each test vector a decision is made so that a 
distribution of decisions results. For KNN, the best 
classification performance resulted from using 51 nearest 
neighbors. 

Accuracy, when KNN classifiers are used, is defined as 
the number of true positives (TP) plus the number of true 
negatives (TN) over the total number of tests: 
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For GMM-UBMs, the performance metric is compactly 
defined in terms of ROC (receiver operating characteristic) 
curve derived values, such as AUC and EER. 

A. KNN   

For this channel ranking scheme, the accuracy of 
classification using all possible and unique 2-channel 
combinations was investigated first. Once the combination 
that lead to the highest accuracy was found, the investigation 
focused next on which channel(s) could be added thereto to 
obtain the best 3 and 4-channel combinations. 

Figure 2 shows the accuracy of classification for all 231 
(=21x22/2) possible unique 2-channel combinations zoomed 
in to the range from 0.8 to 0.93 with color. As a result, in 
Fig. 1 many entries in the matrix are blue or dark blue, 
meaning that the accuracy of classification was below 0.86. 
In this experiment, the best classification performance was 
realized when pair Fc1-Pz was used, which achieved a 
classification accuracy CDF (cumulative distribution 
function) characterization of {0.8933 - 0.9312 - 0.9637}, 
which are the 5th percentile, the mean, and the 95th percentile 
respectively. The latter percentiles provide an idea of how 
concentrated the accuracy (viewed as a random variable) is 
about the mean. The Fc1-Pz pair is followed by Fc1-Cp2, 
with classification performance of {0.8646 - 0.9238 - 
0.9645}. Other combinations, such as Cp2-Pz, Fc1-Fz, and 



  

Fc2-Pz ranked high as well (third, fourth, and fifth 
respectively), but achieved accuracies of less than 0.92.  
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  Fig. 2: Accuracy of 2-channel combinations in matrix form 

Since Fc1 and Pz yielded the highest accuracy of 
classification, the Fc1-Pz pair was used to then search for the 
best 3-channel combination. 

Figure 3 shows the accuracies achieved with all 3-
channel combinations that include Fc1-Pz.  
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Fig. 3: Accuracy of 3-channel combinations that include 
Fc1-Pz 

As seen, the 3-channel combination that yields the highest 
accuracy is Fc1-Pz-Cp2, for which the CDF values of 
classification performance are {0.8988 – 0.9334 - 0.9690}. 

The combination Fc1-Pz-Fz yields the second best 
performance results, with accuracy of performance CDF 
values of {0.8831 - 0.9286 - 0.9581}. Figure 2 shows 
interesting results because Fc1-Cp2 ranked second in the 2-
channel experiment, and Pz, Fz, and Fc2 show up in the 
third, fourth, and fifth best 2-channel combinations. It is also 
worth noting that mean accuracy does not increase by much 
when adding Cp2: an increase from 0.9312 to 0.9334.  

Continuing along the lines above, the best 4-channel 
combination that includes Fc1-Pz-Cp2 is found. The 
combination Fc1-Pz-Cp2-T8 yields classification CDF 
values of {0.8996 - 0.9331 - 0.9775}. Note that while Fc1-

Pz-Cp2-T8 is the best 4-channel combination, accuracy is 
about the same (slightly higher 5th percentile, but slightly 
lower mean) as for its 3-channel counterpart, which suggests 
that a 3-channel combination would be more favorable in the 
feature domain used in this study. However, if 
computational complexity is to be minimized, the Fc1-Pz 
combination should be considered, given that adding Cp2 
will only add 0.22% of accuracy. 

B. GMM-UBM   

In this section, the best 2, 3, and 4-channel combinations 
for GMM-UBM are investigated. The procedure followed is 
similar to that for KNN, except that the best combinations 
are chosen in terms of AUC and EER performance. 

Figure 4 shows the performance for all 231 unique 2-
channel combinations. Figure 4 is a matrix where the values 
above the diagonal represent the AUC and the values below 
the diagonal represent 1–EER (Complementary EER). To 
find the best combinations, AUC should be maximized and 
EER should be minimized, meaning that 1 – EER should be 
maximized as well. 
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Fig. 4: AUC (above diagonal) and 1–EER (below diagonal) 
for all 2-channel combinations 

In Fig. 4, many elements are blue and dark blue because the 
image was zoomed to the range from 0.8 to 1. Just as for 
Fig. 1, Fc1-Pz provides the best performance: Mean AUC of 
0.9899 and mean EER of 0.0357. The 95th and 5th percentiles 
of the AUC of the Fc1-Pz combination are 0.9996 and 
0.9730 respectively, and the 95th and 5th percentile of EER 
for this combination are 0.0700 and 0.0091 respectively. The 
95th percentile of the AUC indicates that only 5% of the 
AUC exceed the 95th percentile, and the 5th percentile 
indicates that 95% of all the AUC exceed the 5th percentile. 
Similarly, for the EER, 5% of all EER exceed the 95th 
percentile and 95% of all EER exceed the 5th percentile.  
Interestingly enough, the second best 2-channel combination 
appears to be Cp2-Pz, which was also highly ranked with 
KNN. Cp2-Pz achieves AUC CDF values of {0.9577 - 
0.9806 - 0.9982} and EER CDF values of {0.0109 - 0.0491 - 
0.0882}. Pz-C4 achieves a slightly higher AUC, but at the 
expense of EER, with CDF values of 0.0182 - 0.0536 - 
0.1222}. Combinations involving Fc1, Fc2, Pz, and Cp2 are 
in the top 10 2-channel combinations, but their AUC are 
below 0.9800 and their EER above 0.0500. 



  

Figure 5 shows the effect of adding one channel to Fc1-
Pz. In Fig. 5, the AUC means fluctuate between 0.9700 and 
0.9900. Similarly, the EER means fall between 0.0300 and 
0.0900. The best 3-channel combination is Fc1-Pz-Cp2, with 
AUC CDF values of {0.9643 - 0.9867 - 0.9990} and EER 
CDF values of {0.0086 - 0.0367 - 0.0700}. 

 

 Fig. 5: AUCs and EERs of all 3-channel combinations that 
include Fc1-Pz 

The second best 3-channel combination is Fc1-Pz-C4, with 
AUC CDF values of {0.9622 - 0.9865 - 0.9992} and EER 
CDF values of {0.0109 - 0.0373 - 0.0745}. The EER means 
for all other combinations exceed 0.0400 and the 
corresponding AUC means are below 0.9850. Note that most 
3-channel combinations involving Fc1 and Pz achieve high 
AUC and low EER. As shown in Fig. 5, it is not advisable to 
combine Fc1-Pz with T8, P8, or F7. 

This experiment suggests that a 2-channel combination 
may achieve higher performance than 3-channel 
combinations when using GMM-UBM and AR models. The 
mean AUC and mean EER of Fc1-Pz-Cp2 are 0.9867 and 
0.0367 respectively. On the other hand, the mean AUC and 
mean EER of Fc1-Pz are 0.9899 and 0.0357, which indicates 
that on average performance deteriorates when a third 
channel is added to Fc1-Pz. In addition, the AUC and EER 
of Fc1-Pz-Cp2 are more spread than those of Fc1-Pz. Since 
feature extraction and classification are less computationally 
demanding for the 2-channel combinations, which also 
happens to improve performance for the feature set and 
classification scheme of this section, leads to the strong 
suggestion that Fc1-Pz be used.   

For completeness, the effect of adding a channel to Fc1-
Pz-Cp2 was also explored. The best 4-channel combination, 
Fc1-Pz-Cp2-T7, has a mean AUC of 0.9844 and a mean 
EER of 0.0367. For this combination, the 95th and 5th 
percentiles of the AUCs are 0.9988 and 0.9546 respectively, 
and the 95th and 5th percentiles of the EERs are 0.0705 and 
0.0159. Although the mean EER did not change and the 
AUC is slightly smaller than that for the Fc1-Pz-Cp2 
combination, computational complexity is not favorable. 
When using Fc1-Pz, feature vectors are 14-D, whereas they 
are 28-D when using Fc1-Pz-Cp2-T7. Besides, mean AUC is 
0.9899 when using Fc1-Pz only. As a result, this experiment 
suggests that the number of channels be kept at 2. 

Figure 6 illustrates a common ROC obtained when 
training and testing GMM-UBMs using pair Fc1-Pz.  

 

Fig. 6: ROC plots when pair Fc1-Pz is used in GMM-UBM 

The closer the ROC curve comes to approximating the top-
left corner the better the performance. Of all 30 test case 
permutations, each producing its own ROC, the worst case 
(black) and the averaged (blue) ROC are shown. 

The area under the ROC curve is the AUC, and the 
intersection between the ROC curve and the red line, which 
is when the false acceptance (FP) and false rejection (FN) 
rates are equal, is the EER. The AUC for the average ROC 
shown is 0.9860 and its EER is 0.0364. What may be even 
more meaningful in practice is that for the worst case ROC, 
AUC is 0.9805 and EER is 0.0700, meaning that for all 30 
test case configurations AUC is higher than 0.9805 and EER 
is 7% or less. Each of these ROC curves is based on using 
between 240 and 260 test vectors from each test subject, i.e. 
incorporating results from 1000 to 1100 test vectors. 

An alternative way of presenting EER in a more detailed 
fashion is by way of detection error tradeoff (DET) curves, 
as shown in Fig. 7, for the Fc1-Pz pair using GMM-UBM. 

 

 Fig. 7: DET curves when pair Fc1-Pz used in GMM-UBM 

In a DET curve false negative rate (FNR) is plotted versus 
false positive rate (FPR) on logarithmic axes. Figure 7 



  

shows the best, average, and worst of the 30 test case 
configurations. EER for each test case are found at the 
intersections with the red line. Note that the best DET curve 
is very close to the bottom left corner, as happens when very 
few test vectors are misclassified; for this subject 
configuration, AUC was 0.9996 and EER was 0.0091. The 
worst case DET curve indicates that for an EER of 7% or 
less, the True Positive/Acceptance rate is at least 93%. 

Of the methods explored here, GMM-UBM using a 2-
channel combination yields the best results. A mean AUC of 
0.9899 was found using GMM-UBM, which slightly 
outperforms 0.97 using SVMs [4]. Both studies used similar 
datasets: 8 subjects in our study vs 10 [4]; approximately 5 
minutes of EEG recordings sampled at 512 Hz in our study 
vs approximately 2 minutes of EEG recordings sampled at 
256 Hz [4]; lastly, windows of 2 s are used for feature 
extraction in our study vs windows of 1 s [4].  

To provide a more comprehensive view of performance, 
AUC and EER are reported in terms of mean as well as 5th 
and 95th percentiles. For GMM-UBM the 5th percentile of 
AUC was higher than 0.97 indicating AUC to be highly 
concentrated near 1.  

Note that the best 2-channel combination found by both 
the KNN and GMM-UBM approaches, based exclusively on 
analysis of the data, was Fc1-Pz. These electrodes are 
located between the Frontal and Central (between Frontal 
and Parietal) cortical regions, just left of center for Fc1, and 
over the center of the Parietal cortical region for Pz. Both the 
Frontal and Parietal regions are implicated in ADHD and 
involve brain networks and attention [16]. It is encouraging 
to find that the results of blind data analysis do not conflict 
with the neurobiology of ADHD. 

V. CONCLUSION 

Several classification methods were used to determine 
which selections of EEG channel combinations produce high 
accuracy of classification into ADHD and Non-ADHD 
subjects. For each of the methods investigated, accuracy was 
determined in terms of multiple measures of the distribution, 
for example the 5th and 95th percentiles and the mean, for the 
area under the curve (AUC) and equal error rate (EER). The 
KNN and GMM-UBM classifiers produced 2, 3, and 4 
channel subset selections with quite a bit of overlap. 
Generally, the 2 and 3-channel selections appear to provide 
an excellent trade-off in terms of accurate performance and 
required computational effort.  For the case of GMM-UBM, 
the pair Fc1-Pz outperformed all the other 2, 3, and 4-
channel combinations. This combination of channels, along 

with GMM-UBM, yielded a 5th percentile AUC value of 
0.97, i.e. highly concentrated near 1. The 95th percentile 
EER was 0.0700. At an EER of 7% or less, the positive 
acceptance rate or detection probability for ADHD was at 
least 93%. 
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